www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgabe lösen
Extremwertaufgabe lösen < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe lösen: Hilfe bei Differentation
Status: (Frage) beantwortet Status 
Datum: 10:18 Sa 01.05.2010
Autor: Alice_S

Aufgabe
Gewisse handelsübliche Konservendosen haben 887 cm3 Inhalt. Wie groß sind der Radius  und die Höhe der Dose zu wählen, damit der Materialverbrauch der Verpackung minimal wird?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich bin derzeit in einer Maturaklasse und mein Mathemathikprofessor hat mir diese Woche neun Aufgaben für mein Spezialgebiet gegeben, von welchen ich bisher keine einzige lösen konnte :(.

Nun glaube ich einen Lösungsansatz für diese Aufgabe gefunden zu haben und bitte um Kontrolle des Ansatzes:

Hauptbedingung:
Oberfläche = 2r²π + 2rπh

Nebenbedingung:
r²πh = 887 cm³
--> h = 887/r²πh

Nebenbedingung in Hauptbedingung einsetzen:
O = 2r²π + 2rπ * 887/r²πh

--> Nun sollte ich die neu formulierte Hauptbedingung ableiten, das will mir jedoch nicht wirklich gelingen; trotzdem hier mein Versuch:

zur Erklärung meiner Vorgangsweise:
2rπ * 887/r²πh habe ich mit der Produktregel abgeleitet wobei ich für die Ableitung des Bruchs wiederum die Quotientenregel verwendet habe.
Ich bin zu diesem Ergebnis gekommen:
O' = 4rπ + 2*887/r²π + 2rπ * 887r²π - 887*2rπ/(r²π)²

Falls sich dies alles als richtig herausstellen sollte, wäre ich sehr dankbar für die Hilfe beim weiteren Lösen der Aufgabe, da ich einfach nicht weiterweiß :(.

Vielen, vielen Dank!

        
Bezug
Extremwertaufgabe lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Sa 01.05.2010
Autor: dormant

Hallo!

> Gewisse handelsübliche Konservendosen haben 887 cm3
> Inhalt. Wie groß sind der Radius  und die Höhe der Dose
> zu wählen, damit der Materialverbrauch der Verpackung
> minimal wird?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Ich bin derzeit in einer Maturaklasse und mein
> Mathemathikprofessor hat mir diese Woche neun Aufgaben für
> mein Spezialgebiet gegeben, von welchen ich bisher keine
> einzige lösen konnte :(.
>  
> Nun glaube ich einen Lösungsansatz für diese Aufgabe
> gefunden zu haben und bitte um Kontrolle des Ansatzes:
>  
> Hauptbedingung:
>  Oberfläche = 2r²π + 2rπh

Alles super.
  

> Nebenbedingung:
>  r²πh = 887 cm³
>  --> h = 887/r²πh

Hier ist der kleine Fehler, der dich quält : [mm] h=\bruch{887}{r^{2}\pi} [/mm]
  

> Nebenbedingung in Hauptbedingung einsetzen:
> O = 2r²π + 2rπ * 887/r²πh

Und damit erhältst du als Zielfunktion O(r) = [mm] 2r^2\pi+2r\pi\bruch{887}{r^2\pi}=2r^2\pi+2*887*r^{-1} [/mm]

Und das kannst du sicherlich selber ableiten :)
  

> --> Nun sollte ich die neu formulierte Hauptbedingung
> ableiten, das will mir jedoch nicht wirklich gelingen;
> trotzdem hier mein Versuch:
>  
> zur Erklärung meiner Vorgangsweise:
>  2rπ * 887/r²πh habe ich mit der Produktregel abgeleitet
> wobei ich für die Ableitung des Bruchs wiederum die
> Quotientenregel verwendet habe.
>  Ich bin zu diesem Ergebnis gekommen:
>  O' = 4rπ + 2*887/r²π + 2rπ * 887r²π -
> 887*2rπ/(r²π)²
>  
> Falls sich dies alles als richtig herausstellen sollte,
> wäre ich sehr dankbar für die Hilfe beim weiteren Lösen
> der Aufgabe, da ich einfach nicht weiterweiß :(.
>  
> Vielen, vielen Dank!

Grüße,
dormant

Bezug
                
Bezug
Extremwertaufgabe lösen: nun komplett richtig?
Status: (Frage) beantwortet Status 
Datum: 11:15 Sa 01.05.2010
Autor: Alice_S

Vielen Dank :)

nach meinem Versuch:
O'(r) =  [mm] 4r\pi [/mm] - [mm] 2*887*r^{-2} [/mm] = [mm] 4r\pi [/mm] - [mm] \bruch{1744}{r²} [/mm]

O'(r) = 0  / *r²
--> [mm] 4r\pi [/mm] * r² -1744 = 0
--> [mm] 4r³\pi [/mm] = 1744
--> r = [mm] \wurzel[3]{\bruch{1744}{4\pi}} \approx [/mm] 5,18
--> h = [mm] \bruch{887}{r²\pi} \approx [/mm] 10,53

Bezug
                        
Bezug
Extremwertaufgabe lösen: Korrektur
Status: (Antwort) fertig Status 
Datum: 11:21 Sa 01.05.2010
Autor: Loddar

Hallo Alice,

[willkommenmr] !!


> nach meinem Versuch:
>  O'(r) =  [mm]4r\pi[/mm] - [mm]2*887*r^{-2}[/mm] = [mm]4r\pi[/mm] - [mm]\bruch{1744}{r^2}[/mm]

[notok] Fast: $2*887 \ = \ [mm] 17\red{7}4$ [/mm] .


> O'(r) = 0  / [mm] *r^2 [/mm]
> --> [mm]4r\pi[/mm] * r² -1744 = 0
> --> [mm]4r^3\pi[/mm] = 1744
> --> r = [mm]\wurzel[3]{\bruch{1744}{4\pi}} \approx[/mm] 5,18

[ok] Prinzipiell richtig. Durch den obigen Rechenfehler ergibt sich hier ein leicht anderer Zahlenwert.

Hast Du auch überprüft, ob es sich hierbei wirklich um ein Extremum handelt? Und welche Art Extremum (Maximum oder Minimum)?


> --> h = [mm]\bruch{887}{r^2\pi} \approx[/mm] 10,53

Nochmal mit dem korrekten r-Wert rechnen.


Gruß
Loddar


Bezug
                                
Bezug
Extremwertaufgabe lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:47 Sa 01.05.2010
Autor: Alice_S

achja genau.. 2.Ableitung bilden und überprüfen, muss ich noch :).

Dankeschön, für die Korrektur und die aufmerksame Hilfe :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]