www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: weiterer Rechenweg
Status: (Frage) beantwortet Status 
Datum: 11:06 Mi 10.01.2007
Autor: junktor

Aufgabe
In einen Halbkreis mit dem Radius r soll ein Rechteck mit maximalen Flächeninhalt eingetragen werden. Berechnen Sie die Abmessungen des Rechtecks und das Verhältnis der beiden Flächeninhalte!

Hallo, liebe Mathe-Freunde!

Ich habe folgendes Problem mit der oben stehenden Extremwertaufgabe:  Als Hauptbedingung erkenne ich:
A(Rechteck)=a*b (die Seiten des Rechtecks) Als Nebenbedingung habe ich [mm] r^2= b^2+(a/2)^2 [/mm] angenommen. Wenn ich das jetzt aber in die Hauptbedingung einsetze, kommt irgendein zeugs raus, wo ich nicht weiterkomme:

A(R)= [mm] a*(wurzel(r^2-(a/2)^2)) [/mm]

und da verließen sie mich.... Ich würde das jetzt ableiten und dann mit dem Maximum weiter machen, aber da bekomme ich immer andere Varianten heraus, die alle nicht richtig zu sein scheinen. Vielleciht liegt'snauch daran, dass ich die Wurzel weiter auflösen muss vor dem Ableiten, aber da sehe ich keine Möglichkeiten... Ich komm' mir ein bisserl blöd vor, es ist doch echt 'ne Anfangsaufgabe...
Es wäre schön, wenn jemand sich dem Problemchen annehmen würde!
Danke schonmal im Voraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Mi 10.01.2007
Autor: leduart

Hallo
eigentlich ist das keine Aufgabe zur Differentialrechnung, da man ganz ohne leicht zeigen kann, dass das Quadrat das größte Rechteck im Kreis ist und damit die Hälfte im Halbkreis.
Damit kennst du schon mal die richtige Lösung,
Dein Ansatz ist richtig, um das Max zu bestimmen, solltest du ihn vereinfachen.
Wenn eine Fkt ein Max hat, so hat das Quadrat davon denselben Extremwert, und [mm] A^2 [/mm] ist viel einfacher.
Eine kleine Vereinfachung ist noch x=a/2.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]