www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Mo 04.10.2004
Autor: rapher

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Guten Tag fleißige Helfer,

habe bei folgender Aufgabe Probleme die Extrimal- und Nebenbedingung aufzustellen:

"Aus einem Baumstamm mit kreisförmigen Querschnitt soll ein Balken so geschnitten werden, dass der Abfall minimal wird."

Ich hab keine Ahnung wie ich daran gehen soll...habe an ein Quadrat gedacht im Kreis...mit A=2*r² aber weiter bin ich nicht gekommen ... Hoffe ihr könnt mir helfen.

MfG,
Raphael



        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Mo 04.10.2004
Autor: Hanno

Hallo Rapher!

[willkommenmr]

Ein Ansatz wäre der folgende:
Du denkst dir den kreisförmigen Querschnitt des Baumstammes und dazugehörig den Mittelpunkt dieses Kreises. Den Radius des Baumstammes kannst du beliebig auf 1 setzen, damit erleichterst du dir die Arbeit ein wenig.

Unsere Veränderliche soll der Winkel [mm] $\varphi$ [/mm] werden, den ich im Bild eingezeichnet habe:
[Dateianhang nicht öffentlich]

Wie im Bild eingemalt siehst du, dass die Grundfläche des Holzbalkens das Doppelte des Sinus von [mm] $\varphi$ [/mm] ist. Die Höhe des Balkens ist dementsprechend das doppelte des Kosinus' von [mm] $\varphi$. [/mm]
Somit lautet bei gegebenem Winkel [mm] $\varphi$ [/mm] die Querschnittsfläche des Holzstückes:
[mm] $2cos(\varphi)\cdot 2sin(\varphi)=4cos(\varphi)sin(\varphi)$. [/mm]
Wegen [mm] $sin(2\alpha)=2sin(\alpha)cos(\alpha)$ [/mm] kannst du den Term noch zu
[mm] $=2sin(2\varphi)$ [/mm]
zusammenfassen.

Der Abfall ist nun die Differenz aus der Querschnittsfläche des Baumstammes und der des herausgeschnittenen Holzes. Die leitest du dann ab und suchst dir wie gewöhnlich dein Minimum.

Schaffst du das?

Liebe Grüße,
Hanno

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                
Bezug
Extremwertaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:32 Mo 04.10.2004
Autor: Hanno

Hi!
Noch eine kleine Anmerkung:
Ich habe jetzt impliziert, dass der herauszuschneidende Balken an vier Punkten mit der Kreisperipherie des Querschnittes übereinstimmt. Dies wurde so nicht vorgegeben, man kann es scih aber recht einfach klar machen, schließlich ist jeder Balken, der die Peripherie nicht berührt, nicht optimal ausgeschnitten, da man ihn ihr hin noch weiter verlängern und somit den Abfall geringer machen würde.

Ist nicht die Welt, sollte aber erwähnt werden.

Liebe Grüße,
Hanno

Bezug
                
Bezug
Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Di 05.10.2004
Autor: rapher

Ehrlich gesagt bringt mich dein Ansatz nicht wirklich weiter!

Habe jetzt aber einen anderen Lösungsweg gefunden:

Sei x, y die Seiten des Balkens, d der Durchmesser des Kreises und des Rechtecks!

1.  A(x,y) = [mm] \pi [/mm] *  (  [mm] \bruch{d}{2})² [/mm] - x * y  -> min.
2.  y= [mm] \wurzel{x²-d²} [/mm]

Zielfunktion: A(x) = [mm] \pi [/mm] *  (  [mm] \bruch{d}{2})² [/mm] - x * [mm] \wurzel{x²-d²} [/mm]







Bezug
                        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Di 05.10.2004
Autor: Hanno

Hi Raphael!

Ok, so kann man es auch machen - sehr schön [ok]!


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]