www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Extremwertaufgabe?
Extremwertaufgabe? < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:11 Di 18.11.2003
Autor: ministel

Hm, ich steh grad vor ner Aufgabe, bei der ich nicht so richtig weiterkomme.

Ich habe als Voraussetzungen:
Sei [mm](\Omega , \mathcal{P}(\Omega ), P)[/mm] ein diskreter Wahrscheinlichkeitsraum.
Seien A, B, C aus [mm]\Omega[/mm] paarweise stochastisch unabhängig mit P(A) = P(B) = P(C) = p und [mm]P(A \cap B \cap C) = 0.[/mm]
Für welches p wird [mm]P(A \cup B \cup C)[/mm] maximal?

Wie gehe ich das denn an, dass ich erkenne, wie p gewählt sein muss? Ich hab da so ein bischen rumgerechnet mit den Voraussetzungen, aber irgendwie dreh ich mich da im Kreis.

        
Bezug
Extremwertaufgabe?: Antwort
Status: (Antwort) fertig Status 
Datum: 00:36 Di 18.11.2003
Autor: Stefan

Liebe Ministel,

es gilt:

[mm] P (A \cup B \cup C) = P(A) + P(B) + P(C) - P(A\cap B) - P(A\cap C) - P(B\cap C) + P(A\cap B \cap C)[/mm]

[mm] = P(A) + P(B) + P(C) - P(A\cap B) - P(A\cap C) - P(B\cap C) [/mm] (da [mm]P(A\cap B\cap C)=0[/mm] nach Voraussetzung)

[mm] = P(A) + P(B) + P(C) - P(A) \cdot P(B) - P(A) \cdot P(C) - P(B) \cdot P(C) [/mm] (da A, B, C paarweise stochastisch unabhängig sind)

[mm] = 3p - 3p^2[/mm]

[mm] = -3\cdot\left(p-\frac{1}{2}\right)^2 + \frac{3}{4}.[/mm]

Dies ist die Scheitelpunktform einer nach unten geöffneten Parabel mit Scheitelpunkt [mm]S\left(\frac{1}{2}/\frac{3}{4}\right)[/mm]

Die Wahrscheinlichkeit ist also maximal für [mm]p=\frac{1}{2}[/mm] und beträgt dann [mm]P(A\cup B \cup C)=\frac{3}{4}[/mm]

Liebe Grüße
Stefan


Bezug
                
Bezug
Extremwertaufgabe?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:03 Di 18.11.2003
Autor: ministel

Verdammt, den Wald vor lauter Bäumen nicht gesehen. :)
Dank dir.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]