www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwert von Gewinnfunktion
Extremwert von Gewinnfunktion < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert von Gewinnfunktion: Cornelsen-Musterlösung falsch?
Status: (Frage) beantwortet Status 
Datum: 22:14 Fr 10.05.2019
Autor: jochendi

Aufgabe
Um den Ertrag einer angebauten Weizensorte zu erhöhen, wird dem Weizen Dünger hinzugefügt. Wird allerdings zu viel Dünger eingebracht, nimmt der Ertrag wieder ab. [...]

Die Funktion lässt sich beschreiben durch
[mm] f(x)=-100x^3+15x^2+15x+5 [/mm]
Dabei ist x die Düngermenge in Tonnen pro Hektar und f(x) der Ertrag in Tonnen pro Hektar.
d) Bestimme eine Gleichung, die den Gewinn pro Hektar in Abhängigkeit von der Düngermenge beschreibt, wenn der Landwirt pro Tonne Weizen einen Gewinn von 150€ erzielt und er Kosten in Höhe von 300€ pro Tonne Dünger hat. Berechne den maximalen Gewinn!

Die Aufgabe stammt von der Seite "mathe-trainer.de" des Cornelsen-Verlages, genauer hier:
[]Link zur Cornelsen-Seite

Dort findet sich auch bereits eine Lösung, die aber meiner Meinung nach falsch ist.

Und zwar wird dort die korrekte Gewinnfunktion aufgestellt, dann lässt man aber die "-300x" einfach unter den Tisch fallen, und rechnet von dort aus mit der (meiner Meinung nach ab da falschen) Gewinnfunktion weiter.

Ich komme mit der Ableiterei, Nullsetzerei und so auf einen maximalen Gewinn bei x=0,264.

Wenn meine Lösung aber korrekt ist, dann ist das bei Cornelsen ja nicht einfach ein Tippfehler, sondern ein richtig dicker Bock, den die da als Lehrbuchverlag schießen.

Deswegen wollte ich zur Sicherheit hier einmal nachfragen, ob mir jemand einen guten Grund nennen kann, die 300x einfach unter den Teppich zu kehren.

Schönen Gruß und vielen Dank,

Jochen

        
Bezug
Extremwert von Gewinnfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Fr 10.05.2019
Autor: Gonozal_IX

Hiho,

du hast recht.
Entweder muss der Satz "Berechne den maximalen Gewinn!" ersetzt werden durch "Berechne den Gewinn beim maximalen Ertrag!" oder es muss ein anderes Maximum berechnet werden.

Unter den gegebenen Voraussetzungen (x > 0) wird der Gewinn wird maximal für $g'(x) = 0 [mm] \gdw [/mm] f'(x) = 2$ was eine andere Lösung wird als $f'(x) = 0$ (nämlich [mm] $\approx [/mm] 0,26$ anstatt $0,28$)

Die letzte Folgerung ist dann erst recht Blödsinn.
Hinzu kommt: Auch die Berechnung des Gewinns ist falsch, es gilt nämlich
$g(0,28) = 1143,12 [mm] \not= [/mm] 1311,12$
Der maximale Gewinn wäre dann korrekt:
$g(0,26) = 1145,46$

edit: Problem Nummer 3: Die Aufgabe an sich ist zusätzlich noch bescheiden formuliert.
Es müsste eigentlich heißen:

> Bestimme eine Gleichung, die den Gewinn pro Hektar in Abhängigkeit von der Düngermenge beschreibt, wenn der Landwirt pro Tonne Weizen Einnahmen von 150€ erzielt und er Kosten in Höhe von 300€ pro Tonne Dünger hat. Berechne den maximalen Gewinn!

Dann wäre nämlich Gewinn = Einnahmen - Kosten
Wie kann er einen Gewinn von 150€ pro Tonne haben, wenn der Gewinn danach 150 - Kosten sein soll?

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]