www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwert Schiffe
Extremwert Schiffe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert Schiffe: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:37 So 04.03.2012
Autor: Sekh

Aufgabe
Um 12.00 Uhr befinden sich ein Passagierschiff und ein Frachter in folgender Situation.
Ihre Kurse kreuzen sich rechtwinklig. Das Passagierschiff fährt mit 21 kn und der Frachter
mit 12 kn auf den Schnittpunkt der Kurse zu. Das Passagierschiff ist noch 36 sm, der
Frachter noch 20 sm von der Kreuzung entfernt.
a) Wann ist ihre Entfernung (Luftlinie) minimal? Wie groß ist sie?

Nebenbedingungen

x=36-21*t
y=20-12*t

meine Zielfunktion lautet folgendermaßen

[mm] d=\wurzel{(36-21*t)^{2}+(20-12*t)^{2}} [/mm]

und abgeleitet sieht es so aus

stimmt das soweit?

[mm] \bruch{1}{2*\wurzel{(36-21*t)^{2}+(20-12*t)^{2}}}*(-42*(36-21*t)+(-24*(20-12*t)) [/mm]

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.matheboard.de/thread.php?postid=1570134#post1570134]

        
Bezug
Extremwert Schiffe: Okay
Status: (Antwort) fertig Status 
Datum: 09:00 Mo 05.03.2012
Autor: Infinit

Hallo SekH,
das sieht gut aus. Ein Rechentipp noch, den man bei solchen Extremwertaufgaben meist anwenden kann. Da die Entfernung immer eine positive Größe ist, ist sie dann minimal, wenn auch ihr Quadrat minimal ist. Das erleichtert das Ableiten, Du musst nämlich die Wurzel nicht mit Dir rumschleppen. Natürlich bekommst Du dann das Minimum in [mm] d^2 [/mm], aber das ist ja nicht weiter schlimm. Das dies so funktioniert, siehst Du am Zähler Deiner abgeleieten Größe, das ist gerade die Ableitung von [mm] d^2 [/mm].
Viele Grüße,
Infinit  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]