www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwert
Extremwert < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:22 Fr 09.03.2012
Autor: Tobbster81

Aufgabe
[mm] G(a,h)=\bruch{2ah}{3} [/mm] + 6 - [mm] \bruch{(a-2)^3}{3}-\bruch{(h-10)^2}{2} [/mm]

1.Habe die part. Ableitungen gebildet:
[mm] Ga(a,h)=\bruch{2h}{3}-(a-2)^2 [/mm]
Gaa(a,h)=-2a+4
[mm] Gh(a,h)=\bruch{2a}{3}-(h-10) [/mm]
Ghh(a,h)=-1

[mm] \Delta [/mm] = [mm] 2a-\bruch{40}{9} [/mm]

2.Ga=0 und Gh=0 setzen

Lösung für a [mm] =\wurzel{\bruch{2h}{3}}+2 [/mm]
           h [mm] =\bruch{2a}{3}+10 [/mm]

soweit richtig???

hab dann ein Problem wenn ich in die Gleichung
h [mm] =\bruch{2a}{3}+10 [/mm]

a durch [mm] \wurzel{\bruch{2h}{3}}+2 [/mm] ,um h zu berechnen.

        
Bezug
Extremwert: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Fr 09.03.2012
Autor: schachuzipus

Hallo Tobbster81,


> [mm]G(a,h)=\bruch{2ah}{3}[/mm] + 6 - [mm]\bruch{(a-2)^3}{3}-\bruch{(h-10)^2}{2}[/mm]
>  1.Habe die part. Ableitungen gebildet:
>  [mm]Ga(a,h)=\bruch{2h}{3}-(a-2)^2[/mm] [ok]
>  Gaa(a,h)=-2a+4 [ok]
>  [mm]Gh(a,h)=\bruch{2a}{3}-(h-10)[/mm] [ok]
>  Ghh(a,h)=-1 [ok]
>  
> [mm]\Delta[/mm] = [mm]2a-\bruch{40}{9}[/mm]
>  
> 2.Ga=0 und Gh=0 setzen
>  
> Lösung für a [mm]=\wurzel{\bruch{2h}{3}}+2[/mm]

Da fehlt eine Lösung:

Wenn [mm](a-2)^2=\frac{2h}{3}\Rightarrow a-2=\red{\pm}\sqrt{\frac{2h}{3}}[/mm]

>             h [mm]=\bruch{2a}{3}+10[/mm]
>  
> soweit richtig???

Jo, bis auf die unterschlagene Lösung für a


>  
> hab dann ein Problem wenn ich in die Gleichung
>   h [mm]=\bruch{2a}{3}+10[/mm]
>  
> a durch [mm]\wurzel{\bruch{2h}{3}}+2[/mm] ,um h zu berechnen.

Was genau ist dein Problem? Zeige doch deine Rechnung.

Ich habe es so gemacht, dass ich [mm]G_h(a,h)=0[/mm] nach [mm]h[/mm] aufgelöst habe und in [mm]G_a(a,h)=0[/mm] eingesetzt habe, es kommen bei mir "krumme" Werte heraus - was möglicherweise an meiner Rechnenschwäche liegt.

Um sicher zu gehen, rechne mal vor, dann sehen wir, wie es nun aussieht...

Dein Weg geht genauso ...

Gruß

schachuzipus


Bezug
                
Bezug
Extremwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Fr 09.03.2012
Autor: Tobbster81

$ [mm] G_h(a,h)=0 [/mm] $ nach $ h $ aufgelöst und in $ [mm] G_a(a,h)=0 [/mm] $ eingesetzt.

Dann habe ich für a1=4,97 und a2=-0,52!!!

richtig???

Bezug
                        
Bezug
Extremwert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Fr 09.03.2012
Autor: MathePower

Hallo Tobbster81,

> [mm]G_h(a,h)=0[/mm] nach [mm]h[/mm] aufgelöst und in [mm]G_a(a,h)=0[/mm] eingesetzt.
>  
> Dann habe ich für a1=4,97 und a2=-0,52!!!
>  


Genauer ergibt sich:

[mm]a_{1}=\bruch{20+2*\wurzel{154}}{9}, \ a_{2}=\bruch{20-2*\wurzel{154}}{9}[/mm]

Damit ist

[mm]a_{1} \approx 4,9799, \ a_{2} \approx 0,5355[/mm]


> richtig???


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]