www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Extremstellen
Extremstellen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:31 So 14.05.2006
Autor: Saloya

Aufgabe
Hallo erstmal! :-)

Ich hab ein Problem mit den Extremstellen. Und zwar lautet die Originalfunktion:

[mm] f(x)=\bruch{x^2-2x+2}{2x-4} [/mm]


Daraus ergibt sich dann in der ersten Ableitung wohl:

[mm] f'(x)=\bruch{2x^2-8x+4}{(2x-4)^2} [/mm]
[mm] f''(x)=\bruch {16}{(2x-4)^3} [/mm]

Aber jetzt komm ich irgendwie nicht mit den Extremstellen voran. Ich hätte jetzt gedacht, dass ich mit dem Zähler von f'(x) weiterrechne, also:

[mm] 2x^2-8x+4 [/mm] = [mm] x^2-4x+2 [/mm]

und dann halt mit der pq-Formel weiter und dann mithilfe vom Nenner überprüfe ob das passt. vonwegen p(x) (Zähler) = Null, q(x) (Nenner) [mm] \not= [/mm] Null...

Kann mir da bitte jemand helfen, ich komm da echt nicht mit klar! :-(

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Extremstellen: Wo ist das Problem?
Status: (Antwort) fertig Status 
Datum: 08:53 So 14.05.2006
Autor: statler

Hallo am Sonntagmorgen!

> Ich hab ein Problem mit den Extremstellen. Und zwar lautet
> die Originalfunktion:
>  
> [mm]f(x)=\bruch{x^2-2x+2}{2x-4}[/mm]
>  
>
> Daraus ergibt sich dann in der ersten Ableitung wohl:
>  
> [mm]f'(x)=\bruch{2x^2-8x+4}{(2x-4)^2}[/mm]
>  [mm]f''(x)=\bruch {16}{(2x-4)^3}[/mm]
>  
> Aber jetzt komm ich irgendwie nicht mit den Extremstellen
> voran. Ich hätte jetzt gedacht, dass ich mit dem Zähler von
> f'(x) weiterrechne, also:
>  
> [mm]2x^2-8x+4[/mm] = [mm]2*(x^2-4x+2)[/mm]
>  
> und dann halt mit der pq-Formel weiter und dann mithilfe
> vom Nenner überprüfe ob das passt. vonwegen p(x) (Zähler) =
> Null, q(x) (Nenner) [mm]\not=[/mm] Null...
>  
> Kann mir da bitte jemand helfen, ich komm da echt nicht mit
> klar! :-(

Aber das sieht doch alles OK aus!

p-q-Formel gibt Nullstllen bei 2 [mm] \pm \wurzel{2} [/mm]

An diesen Stellen ist der Nenner jedenfalls [mm] \not= [/mm] 0, wo ist also das Problem?
Mit der 2. Ableitung oder einer kleinen Zeichnung kannst du dann noch prüfen, wo Min und wo Max, fertich

Gruß aus HH-HArburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]