www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Extrempunkte
Extrempunkte < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrempunkte: Beweis fürs Max. und Min.
Status: (Frage) beantwortet Status 
Datum: 20:26 Fr 27.05.2011
Autor: Good123

Hey Leute,
da ich näcshte Woche meine Mathe mündliche Prüfung habe, bin ich fleißig am wiederholen. Dabei bin ich auf folgendes Problem gestoßen, was glaub ich im Endeffekt recht simpel ist.

Ich habe folgende Gleichung : f(x) = x² + 2 und soll jetzt die Extrempunkte ausrechnen.
f´(x) = 2x
2x = 0
Extrempunkt = 0
die zweite Ableitung bilde ich um zu beweisen, ob es sich bei dem Extrempunkt, in diesem Falle 0, um ein Minimum oder Maximum handelt.

zweite Ableitung ist : 2
soo jetzt stehe ich vor meinem Problem und zwar kann ich meinen errechneten Wert "0" hier ja nicht einsetzen.
Macht man das dann einfach so, indem man sagt : 2 >0 --> Minimum
somit ist der Extrempunkt, der bei "0" liegt ein Tiefpunkt?


Danke für die Hilfe

        
Bezug
Extrempunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Fr 27.05.2011
Autor: Adamantin


> Hey Leute,
>  da ich näcshte Woche meine Mathe mündliche Prüfung
> habe, bin ich fleißig am wiederholen. Dabei bin ich auf
> folgendes Problem gestoßen, was glaub ich im Endeffekt
> recht simpel ist.
>  
> Ich habe folgende Gleichung : f(x) = x² + 2 und soll jetzt
> die Extrempunkte ausrechnen.
>  f´(x) = 2x
> 2x = 0
>  Extrempunkt = 0
>  die zweite Ableitung bilde ich um zu beweisen, ob es sich
> bei dem Extrempunkt, in diesem Falle 0, um ein Minimum oder
> Maximum handelt.
>  
> zweite Ableitung ist : 2
>  soo jetzt stehe ich vor meinem Problem und zwar kann ich
> meinen errechneten Wert "0" hier ja nicht einsetzen.

brauchst du ja auch nicht, weil die Steigung einfach immer positiv ist!

>  Macht man das dann einfach so, indem man sagt : 2 >0 -->

> Minimum
>  somit ist der Extrempunkt, der bei "0" liegt ein
> Tiefpunkt?

klar, ist doch mathematisch einwandfrei, oder? Ich meine, bei [mm] x^2+2 [/mm] handelt es sich um eine um 2 Einheiten auf der y-Achse verschobene Normalparabel, also natürlich einen TP bei 0. Graphisch interpretiert ist die erste Ableitung die Steigung von f(x), die muss für Werte <0 negativ und für Werte >0 positiv sein -> ergibt eine Gerade, die vom Negativen ins Positive verläuft, also 2x. Am TP wechselt die Steigung ja vom Negativen ins Positive, daher erwarten wir in der 1. Ableitung eine Nullstelle mit VZW (vorzeichenwechsel) von - nach +. In der zweiten Ableitung, die ja die Steigung der Geraden angibt, erwarten wir einen rein positiven Wert, egal, wo wir uns befinden. Daher sind diese Ergebnisse alle korrekt und schlüssig. Die Funktion kann also außerdem nur TPs enthalten, so lange niemand die Funktion durch ein - vor dem x umdreht. Daherk annst du automatisch schlussfolgern: Jede Verschiebung in Richtung der beiden Achsen, egal welche, bringt eine Parabel hervor, die weiterhin nur einen TP hat, der immer ein TP bleibt. Dies würde sich allein durch ein VZW oder aber durch neue Terme ändern, also anstatt [mm] x^2 [/mm] etwa  [mm] x^3. [/mm] Auch ein [mm] x^2+x [/mm] oder [mm] x^2-x [/mm] ändert daran nichts ;). Also immer auch graphisch denken.

>  
>
> Danke für die Hilfe


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]