www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremalwertprobleme
Extremalwertprobleme < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremalwertprobleme: Bestimmung der Extremalproblem
Status: (Frage) beantwortet Status 
Datum: 17:46 Do 12.09.2013
Autor: african_sunrise

Aufgabe
Der Eckpunkt P ( x/y) eines achsenparallelen Rechtecks liegt auf der Parabel f(x)= [mm] 3-x^2 [/mm] Wie muss a gewählt werden, damit die REchteckfläche maximal wird ?

Ein Tunnel soll die Form eines Rechtecks mit aufgesetzten Halbkreis erhalten. Wie groß ist die Querschnittsfläche maximal, wenn der Umfang des Tunnels 20m betragen soll.

Ein Stadion hat die Form eines Rechtecks mit zwei angesetzten Halbkreisen. Der Umfang beträgt 400m. WElche Maße muss  das Rechteck erhalten, wenn seine Form maximal sein soll ?

Wie wird die Gleichung aufgestellt ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremalwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Do 12.09.2013
Autor: MathePower

Hallo african_sunrise,


[willkommenmr]


> Der Eckpunkt P ( x/y) eines achsenparallelen Rechtecks
> liegt auf der Parabel f(x)= [mm]3-x^2[/mm] Wie muss a gewählt
> werden, damit die REchteckfläche maximal wird ?
>  
> Ein Tunnel soll die Form eines Rechtecks mit aufgesetzten
> Halbkreis erhalten. Wie groß ist die Querschnittsfläche
> maximal, wenn der Umfang des Tunnels 20m betragen soll.
>  
> Ein Stadion hat die Form eines Rechtecks mit zwei
> angesetzten Halbkreisen. Der Umfang beträgt 400m. WElche
> Maße muss  das Rechteck erhalten, wenn seine Form maximal
> sein soll ?
>  Wie wird die Gleichung aufgestellt ?
>


Bevor Du die Gleichung aufstellen kannst,
ist es ratsam, eine Skizze anzufertigen.


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.



Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]