www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Extremalprinzipien (Eigenwerte
Extremalprinzipien (Eigenwerte < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremalprinzipien (Eigenwerte: Frage
Status: (Frage) beantwortet Status 
Datum: 17:26 Fr 14.01.2005
Autor: Konsi

Habe diese Frage in keinem anderen Forum gestellt.
Hallo
Kann mir jemand was zu den Extremalprinzipien (Poincare,Fischer) sagen.
Ich verstehe nicht ganz was damit gemeint ist.
Es heißt wohl das man durch den Rayleigh-Quotient zu jedem Eigenvektor
den zugehörigen Eigenwert berechnen kann.
Ich verstehe die folgende Formel jedoch nicht so richtig:
[mm] \lambda_{j}=max_{X_{j}} min_{x\inX_{j}}(/) [/mm]
wobei [mm] \lambda_{j} [/mm] die Eigenwerte der Matrix A sind.
Was ist mit: [mm] max_{X_{j}} [/mm]  gemeint?
Gruß, Konsi

        
Bezug
Extremalprinzipien (Eigenwerte: etwas allgemeines
Status: (Antwort) fertig Status 
Datum: 08:32 Di 18.01.2005
Autor: mathemaduenn

Hallo Konsi,
[mm] Ax_i=\lambda_i x_i [/mm]
Wenn man jetzt beide Seiten mit [mm] x_i^T [/mm] durchmultipliziert verliert man zwar ein paar Freiheitsgrade aber richtig bleibts. Also:
[mm] x_i^TAx_i=x_i^T\lambda_ix_i [/mm]
[mm] \lamda_i=\bruch{x_i^TAx_i}{x_i^Tx_i} [/mm]
Also zu jedem Eigenvektor kann man so den Eigenwert bestimmen. Nun nützt einem das i.A. nichts zur Brechnung der Eigenwerte. Aber für bestimmte Klassen von Matrizen ist das Minimum(Maximum) der Funktion
[mm] f(x)=\bruch{x^TAx}{x^Tx} [/mm]
gleich dem minimalen(maximalen) Eigenwert.
gruß
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]