www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Extrema mit Nebenbedingungen
Extrema mit Nebenbedingungen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema mit Nebenbedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Mo 07.06.2010
Autor: erlkoenig

Aufgabe
Bestimmen sie für die Funktion:

[mm] f(x,y)=y^4 [/mm] + [mm] x^2 [/mm] − [mm] 2y^2 [/mm] − x

Die lokalen Extrema auf [mm] \mathbb{R}^2 [/mm]
Die globalen Extrema auf K={(x, y) [mm] \in \mathbb{R}^2 :x^2+y^4\leq [/mm] 20}


[mm] f_x [/mm] = 2x - 1
[mm] f_y [/mm] = [mm] 4y^3 [/mm] - 4y

Notwendiges Kriterium

[mm] f_x [/mm] = 0
[mm] f_y [/mm] = 0

[mm] x=\frac{1}{2} [/mm]

[mm] y_1=-1 \quad y_2=1 \quad y_3=0 [/mm]

Weitere benötigte Ableitungen:
[mm] f_{xx}=2 \quad f_{yy}=12y^2-4 \quad f_{xy}=f_{yx}=0 [/mm]

Damit vereinfacht sich die Hessematrix auf die Hauptdiagonale:

[mm] f_{xx}\cdot f_{yy} [/mm] = ?

Aus [mm] f_{xx}=2 [/mm] folgt, dass alle Extremwerte Minima sind bzw ein Sattelpunkt.

Mit der Hessematrix erhalte ich:

[mm] \Delta=2*12y^2-4=24y^2-8 [/mm]

Die x Werte spielen keine Rolle, oder hab ich mich vertan?

Ansonsten gilt
[mm] y_1=-1 \quad y_2=1 \quad y_3=0 [/mm]

[mm] \Delta_{1,2}=16 [/mm] > 0 [mm] \rightarrow [/mm] Minimum

[mm] \Delta_3=-8 [/mm] < 0 [mm] \rightarrow [/mm] Sattelpunkt

Somit befinden sich 2 Minimas bei
[mm] P_1(\frac{1}{2};-1) P_2(\frac{1}{2};1) [/mm]

und ein Sattelpunkt bei [mm] P_3(\frac{1}{2};0) [/mm]

Ich hoffe ich hab das richtig gemacht.
Allerdings scheitere ich jetzt an der Nebenbedinung für den zweiten Teil.
Wir haben in der Vorlesung den Lagrangschen Multiplikator behandelt, allerdings nur für Gleichungen, nicht für Ungleichungen?
Wie gehe ich da nun vor? Sofern das oben richtig ist ;)

        
Bezug
Extrema mit Nebenbedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Mo 07.06.2010
Autor: leduart

Hallo
wie kommst du drauf aus [mm] f_{xx} [/mm] auf nur min und Sattel zu schliessen? Wie soll man von einem min zum anderen laufen, ohne über nen max zu kommen?
zu 2
entweder die fkt hat schon im Inneren von K  globale Min oder max, oder sie nimmt die auf dem Rand des Gebietes also bei = an.
Gruss leduart

Bezug
                
Bezug
Extrema mit Nebenbedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Mo 07.06.2010
Autor: erlkoenig

Ja stimmt, das mit den 2 Minima gibt keinen Sinn... allerdings hieß es, das vorzeichen von [mm] f_{xx} [/mm] gibt die art des extrem wertes an.
Wie bestimme ich ansonsten ob es ein Hoch oder Tiefpkt ist?

Also ich habe es so gemacht:
Determinante der Matrix > 0 -> Extrema
Determinante < 0 -> Sattelpunkt.

bei negativen [mm] f_{xx} [/mm] ->Maximum
bei postivem [mm] f_{xx} [/mm] -> Minimum

und da [mm] f_{xx} [/mm] ja ne Konstante ist, bzw nicht von der Varibalen abhängt waren es zwei Minimas ... mir ist jetzt zwar schon klar, dass das nicht sein kann aber wie ich es sonst machen soll ist mir etwas fremd.

Mit deiner 2ten Antwort bin ich leider überfordert, kannst du vielleicht etwas genauer sein bzw idioten sicherer?

Bezug
                        
Bezug
Extrema mit Nebenbedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:59 Di 08.06.2010
Autor: leduart

Hallo
Die Hessematrix muss pos oder neg definit sein für min oder max. das mit [mm] f_{xx} [/mm] wie kommst du darauf. lies dein skript odr Buch nach!
Gruss leduart

Bezug
                                
Bezug
Extrema mit Nebenbedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:15 Di 08.06.2010
Autor: erlkoenig

Ja das mit dem positiv oder negativ definit hab ich mittlerweile auch gefunden. Allerdings steht in meinem Lehrbuch das von wegen [mm] f_{xx} [/mm] was mich jetzt etwas schockiert O.o.

Aber selbst wenn ich Bestimme ob die Matrix positiv oder negativ definit ist, bekomme ich doch trotzdem für beide Werte noch das selbe Ergebnis.

Nach dem Hurwitz-Kriterium ist eine reele symetrische Matrix genau dann positiv definit wenn alle Hauptminatoren Positiv sind.

Meine Hesse-Matrix sieht ja allgemein so aus:
[mm] \pmat{ 2 & 0 \\ 0 & 24y^2-8 } [/mm]

für [mm] y_1 [/mm] und [mm] y_2 [/mm] sieht sie ja genau gleich aus, da ich mein evtl negatives Vorzeichen ja ins Quadrat setze.

[mm] \pmat{ 2 & 0 \\ 0 & 16} [/mm]

Auch wenn ich die Definitheit über Eigenwerte bestimmte, bekomme ich nur postive Eigenwerte. Also ebenfalls eine positiv definite Matrix.


Edit:
Für [mm] y_3 [/mm] = 0 bekomme ich die Eigenwerte -8 und 2 somit ist die Matrix ja indefinit und auch hier hab ich wie oben schon vermutet einen Sattelpunkt.
Schon mal lieben Danke für die Hilfe.

Bezug
                                        
Bezug
Extrema mit Nebenbedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Di 08.06.2010
Autor: chrisno

Es muss kein lokales Maximum zwischen den beiden Minima liegen. Dieses Argument gilt im 1-D Fall, aber nicht bei mehr Dimensionen. Stell Dir zu Beispiel eine geneigte Ebene vor. Auf dieser bringst Du einen Bergrücken mit konstanter Höhe auf, der parallel zum Gradienten der Ebene verläuft. Nun drücke links und rechts vom Bergrücken eine Kuhle in die Ebene. So hast Du die beiden Minima, aber kein Maximum dazwischen. Bei Deiner Funktion ist es nicht der Bergrücken, sondern der Sattelpunkt, über den Du gehst. Berechne mal ein paar Funktionswerte. Auch die Extremwerte auf dem Rand helfen Dir bei der Veranschaulichung der Funktion.

Bezug
                
Bezug
Extrema mit Nebenbedingungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:58 Mo 07.06.2010
Autor: erlkoenig

Ah doch okay, wie ich es auf dem Rand bestimme ist mir klar. Das würde ich jetzt mit dem Lagragschen Multiplikator machen. Nur im Inneren ist mir gerade etwas unklar. Prüfe ich da einfach meine lokalen Extremstellen ob sie die Ungleichung erfüllen?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]