www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Extrema mit Nebenbedingung
Extrema mit Nebenbedingung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema mit Nebenbedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Di 08.06.2004
Autor: rossi

Sers

Hab die Aufgabe:
Bestimmen Sie alle globalen Extremstellen der auf der abgeschlossenen Einheitsscheibe E:={(x,y) [mm] \in\IR^2 [/mm] |  [mm] x^2 [/mm] + [mm] y^2 \le [/mm]  1} definierten Funktion
f:(x,y) -> [mm] \wurzel{x^2 + y^2} [/mm] -xy

Ich hab soweit alles gelöst;
Minimum bei 0,0 und Maxima bei [mm] (-\bruch{1}{\wurzel{2}},\bruch{1}{\wurzel{2}}) [/mm] und [mm] (\bruch{1}{\wurzel{2}},-\bruch{1}{\wurzel{2}}) [/mm]

ABER ich bin mir nicht sicher, ob der weg so richtig ist!
Ich hab
f:(x,y) -> [mm] \wurzel{x^2 + y^2} [/mm] -xy
und als Nebenbedingung
h(x,y) -> [mm] x^2 [/mm] + [mm] y^2 [/mm] -1
genommen - darf ich dass eigentlich so ohne weiteres, weil ich ja eigentlich das [mm] \le [/mm] da nicht beachtet hab!

Kann mir da einer mal kurz helfen!

DANKE

Gruß
Rossi

        
Bezug
Extrema mit Nebenbedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Di 08.06.2004
Autor: Marc

Hallo Rossi!

> Hab die Aufgabe:
>  Bestimmen Sie alle globalen Extremstellen der auf der
> abgeschlossenen Einheitsscheibe E:={(x,y) [mm] \in\IR^2 [/mm] |  [mm] x^2 [/mm] +
> [mm] y^2 \le [/mm]  1} definierten Funktion
>  f:(x,y) -> [mm] \wurzel{x^2 + y^2} [/mm] -xy

>  
> Ich hab soweit alles gelöst;
>  Minimum bei 0,0 und Maxima bei
> [mm] (-\bruch{1}{\wurzel{2}},\bruch{1}{\wurzel{2}}) [/mm] und
> [mm] (\bruch{1}{\wurzel{2}},-\bruch{1}{\wurzel{2}}) [/mm]

Das habe ich jetzt noch nicht nachgerechnet, da ich denke, dass dir meine Antwort auch so weiterhelfen wird.

(Wenn wieder etwas weniger im MatheRaum zu tun ist, werde ich das nachholen, oder jemand anders).

  

> ABER ich bin mir nicht sicher, ob der weg so richtig ist!
>  Ich hab
>  f:(x,y) -> [mm] \wurzel{x^2 + y^2} [/mm] -xy

>  und als Nebenbedingung
> h(x,y) -> [mm] x^2 [/mm] + [mm] y^2 [/mm] -1
>  genommen - darf ich dass eigentlich so ohne weiteres, weil
> ich ja eigentlich das [mm] \le [/mm] da nicht beachtet hab!

Du hast es genau richtig gemacht, jedenfalls lese ich das daraus.
Wie im 1-dimensionalen Fall auch, ist für die Berechnung der globalen Extremwerte auch eine Betrachtung des Rands nötig, und dieser Rand (der Einheitsscheibe) wird gerade beschrieben durch [mm] $x^2+y^2-1=0$. [/mm]
Die Untersuchung des Innern der Einheitsscheibe (also [mm] $x^2+y^2-1<0$) [/mm] wird ja bereits durch die relativen Extrema abgedeckt.

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]