www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Extrema
Extrema < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema: Frage
Status: (Frage) beantwortet Status 
Datum: 09:40 Do 23.06.2005
Autor: bobby

Ich habe folgende Funktion auf Minima und Maxima und Sattelpunkte zu untersuchen: [mm] f(x,y)=e^{x}xsin(y) [/mm]

Die Ableitungen habe ich bestimmt:

[mm] f'(x,y)=(e^{x}(x+1)sin(y) [/mm] , [mm] e^{x}xcos(y)) [/mm]
[mm] f''(x,y)=(e^{x}(x+2)sin(y) [/mm] , [mm] e^{x}(x+1)cos(y) [/mm] , [mm] e^{x}(x+1)cos(y) [/mm] , [mm] -e^{x}xsin(y)) [/mm]

Für Extrema gilt ja: f'(x,y)=0
Daraus ergaben sich bei mir folgende Lösungen: (x,y)=(0, [mm] (2k-1)\bruch{\pi}{2}) [/mm] und [mm] (x,y)=(0,k\pi) [/mm]

Die habe ich in f'' eingesetzt und da erhielt ich folgendes: f''(0, [mm] (2k-1)\bruch{\pi}{2})=(2, [/mm] 0 , 0 , 0) und [mm] f''(0,k\pi)=(0 [/mm] , -1 , -1 , 0) , so jetzt weis ich aber nicht so richtig wie/ob ich daraus jetzt Definitheit/Indefinitheit also Minima/Maxima schließen kann und wie das sich mit den Sattelpunkten verhält, ...

        
Bezug
Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Do 23.06.2005
Autor: angela.h.b.


> Ich habe folgende Funktion auf Minima und Maxima und
> Sattelpunkte zu untersuchen: [mm]f(x,y)=e^{x}xsin(y)[/mm]
>  
> Die Ableitungen habe ich bestimmt:

Hallo bobby,
Deine Ableitungen habe ich nicht nachgerechnet, wir nehmen sie mal als richtig, und sortieren den Rest.

> [mm]f'(x,y)=(e^{x}(x+1)sin(y)[/mm] , [mm]e^{x}xcos(y))[/mm]

>  [mm]f''(x,y)=(e^{x}(x+2)sin(y)[/mm] , [mm]e^{x}(x+1)cos(y)[/mm] ,
> [mm]e^{x}(x+1)cos(y)[/mm] , [mm]-e^{x}xsin(y))[/mm]

Meinst Du hier die Hessesche Matrix? Du solltest sie meinen...

f''(x,y)= [mm] \pmat{ e^{x}(x+2)sin(y) & e^{x}(x+1)cos(y) \\ e^{x}(x+1)cos(y) & -e^{x}xsin(y))} [/mm]

>  
> Für Extrema gilt ja: f'(x,y)=0

Stimmt. Das ist eine notwendige Bedingung.

>  Daraus ergaben sich bei mir folgende Lösungen: (x,y)=(0,
> [mm](2k-1)\bruch{\pi}{2})[/mm] und [mm](x,y)=(0,k\pi)[/mm]

Deine erste Lösung in f' eingesetzt ergibt nicht (0,0). Ist wohl ein kl. Schreib- oder Rechenfehler.

>  
> Die habe ich in f'' eingesetzt und da erhielt ich
> folgendes:

Dieses Vorgehen ist im Prinzip richtig. Machen wir's mal mit deiner zweiten Lösung:

k gerade ergibt [mm] f''((0,k\pi))= \pmat{ 0 & 1 \\ 1 & 0 }, [/mm]
k ungerade:  [mm] f''((0,k\pi))= \pmat{ 0 & -1 \\ -1 & 0 } [/mm]

> so jetzt weis ich aber
> nicht so richtig wie/ob ich daraus jetzt
> Definitheit/Indefinitheit also Minima/Maxima schließen kann
> und wie das sich mit den Sattelpunkten verhält, ...

Es ist so:
negativ definit==>Maximum
positiv definit==> Minimum
indefinit==>Sattelpunkt
weder noch ==> ohne nähere Untersuchungen weiß man nichts.

Die Definitheit prüft man entweder, indem man die Eigenwerte bestimmt. Alle EWe pos==> pos.def.
alle EWe neg. ==> neg. def.
pos. und neg. EW ==> indefinit

Oder man schaut für beliebiges (x,y) [mm] \in \IR^{2} [/mm]
(x,y)*Hessematrix* [mm] \vektor{x \\ y} [/mm] an und schaut, ob die Ergebnisse immer positiv sind (pos. def.), immer negativ (neg.def.) oder ob positive und negative vorkommen können (indef.). Für  [mm] \IR^{n} [/mm] gilt das entsprechend.

Ich denke, Du kommst jetzt weiter, oder?
Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]