www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Extrem & Sattelpunkte
Extrem & Sattelpunkte < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrem & Sattelpunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:51 So 19.07.2015
Autor: lalilo

Aufgabe
Bestimmen Sie alle extrem und sattelpunkte der folgenden Funktion: [mm] f(x,y)=x^2y-4xy+y^2 [/mm] für (x,y)Element R
Im Falle eines extremums soll untersucht werden ob es sich um ein Minimum oder Maximum handelt.

Die Aufgabenstellung lautet:

Bestimmen Sie alle extrem und sattelpunkte der folgenden Funktion: [mm] f(x,y)=x^2y-4xy+y^2 [/mm] für (x,y)Element R
Im Falle eines extremums soll untersucht werden ob es sich um ein Minimum oder Maximum handelt.

Danke im Voraus !!!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Extrem & Sattelpunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 So 19.07.2015
Autor: rmix22

Und was genau ist jetzt deine Frage?
Ich gehe davon aus, dass du nicht ernsthaft erwartest, dass dir hier die Aufgabe ohne Eigenleistung deinerseits einfach so vorgerechnet wird.

Bilde also die nötigen partiellen Ableitungen und bestimme damit die kritischen Punkten.

RMix


Bezug
                
Bezug
Extrem & Sattelpunkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:52 So 19.07.2015
Autor: sinnlos123

bilde alles bis f'''(x)
Setze f'(x)=0 und f''(x)=0 und mache die hinreichenden Bedingungen.

Bezug
                        
Bezug
Extrem & Sattelpunkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:15 So 19.07.2015
Autor: rmix22


> bilde alles bis f'''(x)
>  Setze f'(x)=0 und f''(x)=0 und mache die hinreichenden
> Bedingungen.

??
Dir ist schon klar, dass es sich hier um eine Funktion f(x,y) in zwei unabhängigen Variablen x und y handelt?

RMix


Bezug
                                
Bezug
Extrem & Sattelpunkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:51 So 19.07.2015
Autor: sinnlos123

https://www.youtube.com/watch?v=zJASQVRxg1s

Bezug
                                        
Bezug
Extrem & Sattelpunkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 So 19.07.2015
Autor: rmix22


> https://www.youtube.com/watch?v=zJASQVRxg1s

Lieb!
Aber es ging um deine falschen Bezeichnungen -  f'(x), etc.

RMix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]