www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Exponentielle Glättung allgeme
Exponentielle Glättung allgeme < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentielle Glättung allgeme: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 22:24 Mo 09.08.2010
Autor: MariaIW

Hallo,

ich habe eine allgemeine Frage zur exponentiellen Glättung.
Ist es richtig, dass ich mit dieder Prognose immer nur eine, die nächste Periode vorhersagen kann, da ich ja den tatsächlichen bedarf als Wert benötige? D.h. für langfristige prognosen ist dieses Verfahren nicht geeignet?
Welche Möglichkeiten zur langfristigen prognose gibt es?

Danke schonmal für eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Exponentielle Glättung allgeme: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Fr 13.08.2010
Autor: ullim

Hi,

> Hallo,
>  
> ich habe eine allgemeine Frage zur exponentiellen
> Glättung.
>  Ist es richtig, dass ich mit dieder Prognose immer nur
> eine, die nächste Periode vorhersagen kann, da ich ja den
> tatsächlichen bedarf als Wert benötige? D.h. für
> langfristige prognosen ist dieses Verfahren nicht
> geeignet?
>  Welche Möglichkeiten zur langfristigen prognose gibt es?
>  
> Danke schonmal für eure Hilfe!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  

Die exponentielle Glättung benötigt in der Tat für die Schätzung des aktuellen Zustands den aktuellen Messwert um mittels des letzten Zustand und der gewichteten Differenz zwischen dem aktuellen Messwert und dem letzten Zustand den aktuellen Zustand zu berechnen. Dies trifft für einige Verfahren zu, z.B. auch für einen Kalmanfilter. In beiden Modellen gibt es eine Prädiktionskomponente. Bei einem Kalmafilter können das komplizierte dynamische Modelle sein, beim exponentiellen Modell besagt die Prädiktionskomponente, dass der zukünftige Wert dem letzten geschätzten Wert entspricht. D.h. das Modell modelliert einen konstanten Vorgang.

Vorhersage: [mm] x_{k|k-1}=x_{k-1} [/mm]

Korrektur: [mm] x_k=x_{k|k-1}+\alpha*(y_k-x_{k|k-1}) [/mm]

Fällt nun ein Messwert aus, besagt das exponentielle Modell, das der nächste Schätzwert dem vorhergehenden entspricht, d.h. die Korrektur wird nicht ausgeführt. Bei einem Kalmanfilter wird der neue Zustand durch ein dynamisches Modell der Form

[mm] A_k*x_{k-1} [/mm] beschrieben wobei [mm] x_{k-1} [/mm] der letzte geschätzte Zustand ist und [mm] A_k [/mm] den Übergang des Zustandes vom Zeitpunkt k-1 auf den Zeitpunkt k beschreibt.

In Formeln

Vorhersage: [mm] x_{k|k-1}=A_{k-1}*x_{k-1} [/mm]

Korrektur: [mm] x_k=x_{k|k-1}+K_k*(y_k-x_{k|k-1}) [/mm]

In beiden Fällen bedeuten

[mm] x_k [/mm] = Zustand zum Zeitpunkt k

[mm] x_{k|k-1} [/mm] = Vorhersage des Zustandes [mm] x_{k-1} [/mm] auf den Zeitpunkt k unter Berücksichtigung von Messwerten bis zum Zeitpunkt k-1

[mm] y_k [/mm] = Messwert zum Zeitpunkt k

Die Frage nach einer langfristigen Prognose muss also zuerst die Frage beantworten, wie verhält sich der Prozess zeitlich gesehen. Je genauer man das Verhalten kennt, desto besser ist die Vorhersage.

Bei einem Kalmanfilter wird der Gewichtungsfaktor [mm] K_k [/mm] im Unterschied zum exponentiellen Modell dynamisch berechnet. Bei dem exponentiellen Modell ist der Gewichtungsfaktor konstant.





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]