www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Exponentialverteilung
Exponentialverteilung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialverteilung: Frage
Status: (Frage) beantwortet Status 
Datum: 23:44 Mi 10.08.2005
Autor: AndreHarrweg

für ein zufällig ausgewähltes Wassermolekül ist die Zeit bis zum Auslaufen aus einem Gefäß exponential verteilt. Der Erwartungswert für dieses Gefäß ist 4 Minuten.

a)Wie groß ist die Wahrscheinlichkeit, dass das ausgewählte Molekül während der ersten zwei Minuten ausfließt.

b)Nach welcher Zeit ist die Hälfte des Wassers ausgelaufen?

für a hab ich:
f(x)=k*e^(-c*x)

[mm] \integral_{-\infty}^{\infty} [/mm] {f(x) dx}= [mm] \integral_{0}^{\infty} [/mm] {f(x) dx}=-4ke^(-1/4*x)=4k=1
=>k=1/4
F(x)= [mm] \integral_{-\inty}^{x} [/mm] {1/4e^(-1/4)t dt}=1-e^(-1/4*x)
mit x=2  folgt F(X)=0,3935
oder habe ich mich da verrechnet?

wie gehe ich am besten b an ?

        
Bezug
Exponentialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:39 Do 11.08.2005
Autor: AndreHarrweg

ist b vieleicht  -4*ln(0,5) ????????

Bezug
        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Do 11.08.2005
Autor: Brigitte

Hallo Andre!

Also erstmal vorweg. Ich finde die Aufgabe ziemlich merkwürdig, weil die Exponentialverteilung in meinen Augen keine geeignete Modellierung darstellt. Denn die Verteilungsfunktion wird ja niemals 1, sondern konvergiert nur (für x gegen unendlich) gegen 1, was im Umhekrschluss bedeutet, dass das Gefäß niemals komplett geleert ist. [verwirrt]

> für ein zufällig ausgewähltes Wassermolekül ist die Zeit
> bis zum Auslaufen aus einem Gefäß exponential verteilt. Der
> Erwartungswert für dieses Gefäß ist 4 Minuten.
>  
> a)Wie groß ist die Wahrscheinlichkeit, dass das ausgewählte
> Molekül während der ersten zwei Minuten ausfließt.
>  
> b)Nach welcher Zeit ist die Hälfte des Wassers
> ausgelaufen?
>  
> für a hab ich:
>  f(x)=k*e^(-c*x)
>  
> [mm]\integral_{-\infty}^{\infty}[/mm] {f(x) dx}=
> [mm]\integral_{0}^{\infty}[/mm] {f(x) dx}=-4ke^(-1/4*x)=4k=1
>  =>k=1/4
>  F(x)= [mm]\integral_{-\infty}^{x}[/mm] {1/4e^(-1/4)t dt}=1-e^(-1/4*x)
>  mit x=2  folgt F(X)=0,3935

Alles richtig.

> wie gehe ich am besten b an ?

Deine Lösung in der Mitteilung stammt aus dem Ansatz $F(x)=0.5$. Wenn man das so interpretiert, dass dann ein beliebiges Teilchen mit gleicher Wahrscheinlichkeit entwederf noch im Gefäß oder schon draußen ist und deshalb gerade die Hälfte des Wassers rausgeflossen sein muss, stimme ich überein.

Viele Grüße
Brigitte

P.S.: Bitte poste demnächst im Uni-Forum für Stochastik und nicht mehr im Schulforum. Und so eine kleine Grußformel ist doch nicht zu viel verlangt, oder?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]