www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Exponentialverteilung
Exponentialverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialverteilung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:03 Mo 04.01.2010
Autor: kleine_ente_nora

Aufgabe
Beweisen Sie folgenden Satz:
Es sei eine Funktion F gegeben mit F: [mm] \IR^{+} \to \IR [/mm] und
- F(s+t)=F(s)*F(t)
- F ist auf jedem beschränkten Intervall beschränkt
- [mm] \exists [/mm] t>0: [mm] F(t)\not=0. [/mm]
Dann folgt: [mm] \exists \alpha\in\IR: F(t)=F_{\alpha}(t):=e^{t*\alpha} \forall t\ge [/mm] 0.
Vorschlag für die Beweisstruktur:
a) F ist überall von Null verschieden.
b) F ist überall strikt positiv
c) F ist bei 0 (von rechts) stetig.
d) F ist bei jedem [mm] t\ge [/mm] 0 von rechts stetig.
e) Bestimme [mm] \alpha [/mm] so, dass [mm] F(1)=e^{\alpha}. [/mm] Dann ist [mm] F=F_{\alpha} [/mm] auf [mm] \IQ^{+}. [/mm]
f) Kombiniere d) und e) um die Aussage zu folgern.

Ich verstehe schon a) nicht. Wenn ich eine beschränkte Funktion habe, dann kann es doch durchaus Sprungstellen geben und egal wie klein ich mein Intervall wähle, dort kann doch eine Sprungstelle auf Null sein. Ich habe bereits gezeigt, dass F(0)=1 gelten muss, aber das hilft mir doch auch nicht, denn schon bei 1,000000000000001 kann die Funktion doch auf Null springen, oder?
Kann mir da jemand helfen? Dank euch schonmal im Voraus. Nora

        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Mo 04.01.2010
Autor: steppenhahn

Hallo,

> Beweisen Sie folgenden Satz:
>  Es sei eine Funktion F gegeben mit F: [mm]\IR^{+} \to \IR[/mm] und
>  - F(s+t)=F(s)*F(t)
>  - F ist auf jedem beschränkten Intervall beschränkt
>  - [mm]\exists[/mm] t>0: [mm]F(t)\not=0.[/mm]
>  Dann folgt: [mm]\exists \alpha\in\IR: F(t)=F_{\alpha}(t):=e^{t*\alpha} \forall t\ge[/mm]
> 0.
>  Vorschlag für die Beweisstruktur:
> a) F ist überall von Null verschieden.
> b) F ist überall strikt positiv
> c) F ist bei 0 (von rechts) stetig.
> d) F ist bei jedem [mm]t\ge[/mm] 0 von rechts stetig.
> e) Bestimme [mm]\alpha[/mm] so, dass [mm]F(1)=e^{\alpha}.[/mm] Dann ist
> [mm]F=F_{\alpha}[/mm] auf [mm]\IQ^{+}.[/mm]
> f) Kombiniere d) und e) um die Aussage zu folgern.

Deine Vermutungen über die Sprungstellen treffen eben nicht zu, wenn du eine Funktion mit obigen Eigenschaften hast.
Hier ein Tipp erstmal zu a) und b):

Wenn du weißt, dass ein t > 0 existiert, für das [mm] F(t)\not= [/mm] 0, dann kannst du mit der ersten Eigenschaft folgern:

F(2*t) = F(t)*F(t) = [mm] (F(t))^{2} [/mm] > 0.

Und ähnlich zumindest erstmal F(n*t) [mm] \not= [/mm] 0 für alle [mm] n\in\IN. [/mm]
Nun haben wir praktisch die Eigenschaft benutzt, um über die "linke Seite" F(s+t) etwas auszusagen, jetzt versuchen wir dasselbe für die rechte Seite:

0 [mm] \not= [/mm] F(t) = F(1/2*t)*F(1/2*t),

Durch geschickte Aufteilung (zum Beispiel wähle [mm] q\in\IR_{+}, [/mm] q < 1 beliebig), kannst du somit für alle [mm] x\in(0,1) [/mm] mit Hilfe von [mm] 0\not= [/mm] F(t) = F(q*t)*F((1-q)*t) folgern, dass F dort [mm] \not= [/mm] 0 ist (wenn einer der Faktoren 0 wäre, könnte nichts rauskommen, was ungleich 0 ist).
Mit der obigen Folgerung für die natürlichen Zahlen hast du dann a) schon fertig.

Zu b):

Nun musst du damit arbeiten, dass du zum Beispiel für F(2*t) > 0 aussagen kannst. Außerdem (siehe F(t) = F(1/2*t)*F(1/2*t9) bekommst du die Aussage auch für F(t) > 0. Damit kannst du die Aussage für alle F(n*t) > 0 schon wieder beweisen.
Nun überlege selbst, was mit den Zahlen dazwischen ist!

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]