www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Exponentialmatrix
Exponentialmatrix < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 So 20.06.2010
Autor: m0ppel

Aufgabe
Es sei [mm] V:=Mat_{n} (\IR [/mm] ) die Algebra der [mm] (n\times [/mm] n)-Matrizen, d.h. neben der [mm] \IR [/mm] -Vektorraum- Struktur von V betrachten wir auch die multiplikative Struktur, die durch die Matrix- Multiplikation gegeben ist. Für eine Matrix A [mm] \in [/mm] V sei
[mm] A^i [/mm] := A* [mm] \ldots [/mm] *A [mm] \underbrace{A* \ldots *A}_{i Faktoren} [/mm] I>= 1, [mm] A^0 [/mm] := [mm] E_{n} [/mm]

Wir führen die Folge [mm] (v_{k})_{k \in \IN} [/mm] über  
[mm] v_{k} [/mm] := [mm] \summe_{i=0}^{k} \bruch{A^i }{i!}, k\in \IN [/mm]
ein.

a) Zeigen Sie , dass die Folge [mm] (v_{k})_{k \in \IN} [/mm] in der Operatornorm konvergiert.
b) Berechnen Sie die Exponentiale folgender Matrizen:
[mm] \pmat{ 0 & 1 \\ 0 & 0 } [/mm] ; [mm] \pmat{ 1 & 1 \\ 0 & 0 } [/mm] ; [mm] \pmat{ 1 & a \\ 0 & 1 } a\in \IR; \pmat{ 0 & t \\ -t & 0 } t\in \IR [/mm]
c) Geben Sie eine [mm] (2\times [/mm] 2)-Matrizen A und B an, für die gilt:
exp(A+B) [mm] \not= [/mm] exp(A)*exp(B)

a) Ich weiß, wie ich im allgemeinem die Konvergenz nachzuweisen habe, hier liegt mein Problem bei der Definition der Operatornorm. Ein einfaches Beispiel zur Veranschaulichung wäre hier echt toll.

b) Im Prinzip weiß ich wie es geht, ich bin mir nur bei der Lösung nicht sicher und hätte gerne, dass da mal einer rüber schaut.

[mm] exp(\pmat{ 0 & 1 \\ 0 & 0 }) [/mm] = 1+ [mm] \pmat{ 0 & 1 \\ 0 & 0 } [/mm] + [mm] \pmat{ 0 & 0 \\ 0 & 0 } [/mm] = [mm] \pmat{ 1 & 1 \\ 0 & 1 } [/mm]

[mm] exp(\pmat{ 1 & 1 \\ 0 & 0 }) [/mm] = 1 + [mm] \bruch{\pmat{ 1 & 1 \\ 0 & 0 }}{1!} [/mm]  + [mm] \bruch{\pmat{ 1 & 1 \\ 0 & 0 })^2}{2!} [/mm] + ... + [mm] \bruch{\pmat{ 1 & 1 \\ 0 & 0 })^k}{k!} [/mm] mit k strebt gegen unendlich
= [mm] \pmat{ 2 & 1 \\ 0 & 1 } [/mm] + [mm] \bruch{\pmat{ 1 & 1 \\ 0 & 0 })^2}{2!} [/mm] + ... + [mm] \bruch{\pmat{ 1 & 1 \\ 0 & 0 })^k}{k!} [/mm] mit k strebt gegen unendlich
= [mm] \pmat{ \summe_{i=0}^{k} \bruch{1}{i!} & (\summe_{i=0}^{k} \bruch{1}{i!})-1 \\ 0 & (\summe_{i=0}^{k} \bruch{1}{i!})-1} =\pmat{ e & e-1 \\ 0 & e-1 } [/mm]

Der Rest ist hier ja ähnlich. Deswegen soll das nun erstmal hier reichen. Ich bin mir nämlich nicht sicher bei der Zusammenfassung der Summe.

c) Hier muss ich nur noch ein Gegenbeispiel finden, wäre toll wenn mir jemand einen Trick hier verraten könnte, hab nämlich schon viel hin und her gerechnent und bei mir war die immer das "=" erfüllt.

Vielen Dank schon mal!

        
Bezug
Exponentialmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Mo 21.06.2010
Autor: m0ppel

Kann mir einer sagen, wie ich bei der a) die Konvergenz zu zeigen habe, wenn ich die Operatornorm beachten muss

Bezug
                
Bezug
Exponentialmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 Mo 21.06.2010
Autor: felixf

Moin

> Kann mir einer sagen, wie ich bei der a) die Konvergenz zu
> zeigen habe, wenn ich die Operatornorm beachten muss

Beachte, dass [mm] $\|A B\| \le \|A\| \cdot \|B\|$ [/mm] ist.

Damit zeige [mm] $\|v_k [/mm] - [mm] v_\ell\| \le \sum_{i=k}^\ell \frac{\|A\|^i}{i!}$. [/mm] Daraus folgt, dass das ganze eine Cauchy-Folge ist, und da $V$ ein endlichdimensionaler [mm] $\IR$-Vektorraum [/mm] ist (und somit wieder vollstaendig) folgt damit die Konvergenz.

LG Felix


Bezug
        
Bezug
Exponentialmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Mo 21.06.2010
Autor: felixf

Moin!

> Es sei [mm]V:=Mat_{n} (\IR[/mm] ) die Algebra der [mm](n\times[/mm]
> n)-Matrizen, d.h. neben der [mm]\IR[/mm] -Vektorraum- Struktur von V
> betrachten wir auch die multiplikative Struktur, die durch
> die Matrix- Multiplikation gegeben ist. Für eine Matrix A
> [mm]\in[/mm] V sei
>   [mm]A^i[/mm] := A* [mm]\ldots[/mm] *A [mm]\underbrace{A* \ldots *A}_{i Faktoren}[/mm]
> I>= 1, [mm]A^0[/mm] := [mm]E_{n}[/mm]
> Wir führen die Folge [mm](v_{k})_{k \in \IN}[/mm] über   [mm]v_{k}[/mm] :=
> [mm]\summe_{i=0}^{k} \bruch{A^i }{i!}, k\in \IN[/mm]  ein.
>  
> a) Zeigen Sie , dass die Folge [mm](v_{k})_{k \in \IN}[/mm] in der
> Operatornorm konvergiert.
> b) Berechnen Sie die Exponentiale folgender Matrizen:
> [mm]\pmat{ 0 & 1 \\ 0 & 0 }[/mm] ; [mm]\pmat{ 1 & 1 \\ 0 & 0 }[/mm] ; [mm]\pmat{ 1 & a \\ 0 & 1 } a\in \IR; \pmat{ 0 & t \\ -t & 0 } t\in \IR[/mm]
>  
> c) Geben Sie eine [mm](2\times[/mm] 2)-Matrizen A und B an, für die
> gilt:
> exp(A+B) [mm]\not=[/mm] exp(A)*exp(B)

>

>
> a) Ich weiß, wie ich im allgemeinem die Konvergenz
> nachzuweisen habe, hier liegt mein Problem bei der
> Definition der Operatornorm. Ein einfaches Beispiel zur
> Veranschaulichung wäre hier echt toll.

Siehe meine andere Antwort.

> b) Im Prinzip weiß ich wie es geht, ich bin mir nur bei
> der Lösung nicht sicher und hätte gerne, dass da mal
> einer rüber schaut.
>  
> [mm]exp(\pmat{ 0 & 1 \\ 0 & 0 })[/mm] = 1+ [mm]\pmat{ 0 & 1 \\ 0 & 0 }[/mm] +
> [mm]\pmat{ 0 & 0 \\ 0 & 0 }[/mm] = [mm]\pmat{ 1 & 1 \\ 0 & 1 }[/mm]

[ok] (wenn auch nicht so toll aufgeschrieben)

> [mm]exp(\pmat{ 1 & 1 \\ 0 & 0 })[/mm] = 1 + [mm]\bruch{\pmat{ 1 & 1 \\ 0 & 0 }}{1!}[/mm]
>  + [mm]\bruch{\pmat{ 1 & 1 \\ 0 & 0 })^2}{2!}[/mm] + ... +
> [mm]\bruch{\pmat{ 1 & 1 \\ 0 & 0 })^k}{k!}[/mm] mit k strebt gegen
> unendlich
>  = [mm]\pmat{ 2 & 1 \\ 0 & 1 }[/mm] + [mm]\bruch{\pmat{ 1 & 1 \\ 0 & 0 })^2}{2!}[/mm]
> + ... + [mm]\bruch{\pmat{ 1 & 1 \\ 0 & 0 })^k}{k!}[/mm] mit k strebt
> gegen unendlich

Was ist denn [mm] $\pmat{ 1 & 1 \\ 0 & 0 }^k$? [/mm] Hast du das mal fuer $k = 2, 3, 4, ...$ ausgerechnet?

>  = [mm]\pmat{ \summe_{i=0}^{k} \bruch{1}{i!} & (\summe_{i=0}^{k} \bruch{1}{i!})-1 \\ 0 & (\summe_{i=0}^{k} \bruch{1}{i!})-1} =\pmat{ e & e-1 \\ 0 & e-1 }[/mm]

Es ist voellig unverstaendlich, wie du hierdrauf kommst, wenn du nicht erstmal [mm] $\pmat{ 1 & 1 \\ 0 & 0 }^k$ [/mm] ausrechnest und das Ergebnis auch nennst.

Dein Ergebnis stimmt uebrigens nicht; der Eintrag unten rechts stimmt nicht.

> Der Rest ist hier ja ähnlich. Deswegen soll das nun
> erstmal hier reichen. Ich bin mir nämlich nicht sicher bei
> der Zusammenfassung der Summe.

Wenn du hinschreiben wuerdest, wie du sie zusammenfasst, koennten wir dir auch sagen wo das Problem liegt.

> c) Hier muss ich nur noch ein Gegenbeispiel finden, wäre
> toll wenn mir jemand einen Trick hier verraten könnte, hab
> nämlich schon viel hin und her gerechnent und bei mir war
> die immer das "=" erfüllt.

Hast du zwei Matrizen $A$ und $B$ mit $A [mm] \neq [/mm] B$ probiert? Gilt naemlich $A = B$, so kann man zeigen, dass [mm] $\exp(A [/mm] + B) = [mm] \exp(A) \exp(B)$ [/mm] ist.

Nimm doch fuer $A$ etwas wie [mm] $\pmat{ 1 & 0 \\ 0 & 2 }$ [/mm] und fuer $B$ etwas von der Form [mm] $\pmat{ \ast & \ast \\ 0 & \ast }$. [/mm] Vielleicht kannst du auch etwas aus b) weiterverwenden.

LG Felix


Bezug
                
Bezug
Exponentialmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:36 Mo 21.06.2010
Autor: m0ppel


> > b) Im Prinzip weiß ich wie es geht, ich bin mir nur bei
> > der Lösung nicht sicher und hätte gerne, dass da mal
> > einer rüber schaut.
>  >  
> > [mm]exp(\pmat{ 0 & 1 \\ 0 & 0 })[/mm] = 1+ [mm]\pmat{ 0 & 1 \\ 0 & 0 }[/mm] +
> > [mm]\pmat{ 0 & 0 \\ 0 & 0 }[/mm] = [mm]\pmat{ 1 & 1 \\ 0 & 1 }[/mm]
>  
> [ok] (wenn auch nicht so toll aufgeschrieben)
>  
> > [mm]exp(\pmat{ 1 & 1 \\ 0 & 0 })[/mm] = 1 + [mm]\bruch{\pmat{ 1 & 1 \\ 0 & 0 }}{1!}[/mm]
> >  + [mm]\bruch{\pmat{ 1 & 1 \\ 0 & 0 })^2}{2!}[/mm] + ... +

> > [mm]\bruch{\pmat{ 1 & 1 \\ 0 & 0 })^k}{k!}[/mm] mit k strebt gegen
> > unendlich
>  >  = [mm]\pmat{ 2 & 1 \\ 0 & 1 }[/mm] + [mm]\bruch{\pmat{ 1 & 1 \\ 0 & 0 })^2}{2!}[/mm]
> > + ... + [mm]\bruch{\pmat{ 1 & 1 \\ 0 & 0 })^k}{k!}[/mm] mit k strebt
> > gegen unendlich
>  
> Was ist denn [mm]\pmat{ 1 & 1 \\ 0 & 0 }^k[/mm]? Hast du das mal
> fuer [mm]k = 2, 3, 4, ...[/mm] ausgerechnet?
>  
> >  = [mm]\pmat{ \summe_{i=0}^{k} \bruch{1}{i!} & (\summe_{i=0}^{k} \bruch{1}{i!})-1 \\ 0 & (\summe_{i=0}^{k} \bruch{1}{i!})-1} =\pmat{ e & e-1 \\ 0 & e-1 }[/mm]

>  
> Es ist voellig unverstaendlich, wie du hierdrauf kommst,
> wenn du nicht erstmal [mm]\pmat{ 1 & 1 \\ 0 & 0 }^k[/mm] ausrechnest
> und das Ergebnis auch nennst.
>  
> Dein Ergebnis stimmt uebrigens nicht; der Eintrag unten
> rechts stimmt nicht.
>  
> > Der Rest ist hier ja ähnlich. Deswegen soll das nun
> > erstmal hier reichen. Ich bin mir nämlich nicht sicher bei
> > der Zusammenfassung der Summe.
>  
> Wenn du hinschreiben wuerdest, wie du sie zusammenfasst,
> koennten wir dir auch sagen wo das Problem liegt.

bei b) hab ich die Definition von der Eulerzahl verwendet:
[mm] e^1:= \summe_{i=0}^{\infty} \bruch{1}{i!} [/mm]
Weiter weiß ich dass die 2. Matrix hoch n mit n [mm] \not=0 [/mm] bleibt die Matrix.
und bei dem Ergebnis hast du recht, ich meinte eigentlich
[mm] \pmat{ e& e-1 \\ 0& e} [/mm] ist es dann richtig?


Lg


Bezug
                        
Bezug
Exponentialmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 Mo 21.06.2010
Autor: felixf

Moin!

> > > Der Rest ist hier ja ähnlich. Deswegen soll das nun
> > > erstmal hier reichen. Ich bin mir nämlich nicht sicher bei
> > > der Zusammenfassung der Summe.
>  >  
> > Wenn du hinschreiben wuerdest, wie du sie zusammenfasst,
> > koennten wir dir auch sagen wo das Problem liegt.
>  
> bei b) hab ich die Definition von der Eulerzahl verwendet:
>  [mm]e^1:= \summe_{i=0}^{\infty} \bruch{1}{i!}[/mm]

Na, das hab ich mir schon gedacht. Nur, wie kommst du z.B. auf das $e - 1$ unten rechts?

>  Weiter weiß
> ich dass die 2. Matrix hoch n mit n [mm]\not=0[/mm] bleibt die
> Matrix.

Exakt.

>  und bei dem Ergebnis hast du recht, ich meinte eigentlich
> [mm]\pmat{ e& e-1 \\ 0& e}[/mm] ist es dann richtig?

Nein. Also nochmal meine Frage: wie kommst du auf den Eintrag unten rechts?

LG Felix


Bezug
                                
Bezug
Exponentialmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:55 Mo 21.06.2010
Autor: m0ppel

Oh man ich stehe heute wohl voll auf dem Schlauch, sry!
Da muss ja eine 1 stehen, weil in der Summe an dieser Stelle 1+0+....+0 steht.
Bin ich jetzt richtig?

Bezug
                                        
Bezug
Exponentialmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 00:24 Di 22.06.2010
Autor: felixf

Moin!

> Oh man ich stehe heute wohl voll auf dem Schlauch, sry!
> Da muss ja eine 1 stehen, weil in der Summe an dieser
> Stelle 1+0+....+0 steht.
> Bin ich jetzt richtig?

Ja, bist du!

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]