www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exponentialgleichung
Exponentialgleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 Do 02.06.2011
Autor: Ayu_Colin

Aufgabe
Löse die Gleichung.

[mm] 2^{5x + 3} \* \bruch{2^{x - 1}}{2^{-2x + 4}} [/mm] = [mm] 4^{-x - 6} [/mm]

Hallo zusammen,

das hier ist eine freiwillige Aufgabe, die uns unser Lehrer gegeben hat, um unsere Note zu verbessern. Ich bin nicht besonders stark in Mathe, deswegen kann ich jede gute Note brauchen. Mit den ersten zwei Aufgaben auf dem Arbeitsblatt kam ich zurecht, aber die dritte gibt mir Rätsel auf. ;)

Mein Ansatz wäre folgender, aber selbst da bin ich mir nicht sicher.

(5x + 3) * log5 + [mm] \bruch{(x-1) \* log2}{(-2x + 4) \* log2} [/mm] = (-x - 6) [mm] \* [/mm] log4

Aber da hört's dann auch schon auf. Ist das überhaupt richtig? Und wenn ja, wie geht's danach weiter? Ich bin überfordert. ;)

Ich würde mich über Hilfe freuen.
Schonmal vielen Dank im Voraus.

Gruß,

Ayu_Colin

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Exponentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Do 02.06.2011
Autor: M.Rex

Hallo und [willkommenmr]

Sinnvoller ist es, erstmal ein wenig die Potenzgesetze zu bemühen, es gilt:

[mm] 2^{5x + 3}\cdot\bruch{2^{x-1}}{2^{-2x + 4}}=4^{-x - 6} [/mm]
[mm] \Leftrightarrow 2^{(5x+3)}\cdot2^{[(x-1)-(-2x+4)]}=(2^{2})^{(-x-6)} [/mm]
[mm] \Leftrightarrow 2^{(5x+3)+[(x-1)-(-2x+4)]}=2^{2\cdot(-x-6)} [/mm]

Jetzt kannst du die Exponenenten gleichsetzen, es gilt also:

[mm](5x+3)+[(x-1)-(-2x+4)]=2\cdot(-x-6)[/mm]

Marius



Bezug
                
Bezug
Exponentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 Fr 03.06.2011
Autor: mmhkt

Guten Morgen,
auch wenn ich schon lange aus der Schule heraus bin, interessiert mich diese Aufgabe doch.
Erstens weil ich selbst damit immer zu kämpfen hatte und zweitens gelegentlich familiäre Hausaufgabenhilfe gefragt ist.

  

> Sinnvoller ist es, erstmal ein wenig die Potenzgesetze zu
> bemühen, es gilt:
>  
> [mm]2^{5x + 3}\cdot\bruch{2^{x-1}}{2^{-2x + 4}}=4^{-x - 6}[/mm]
>  
> [mm]\Leftrightarrow 2^{(5x+3)}\cdot2^{[(x-1)-(-2x+4)]}=(2^{2})^{(-x-6)}[/mm]
>  
> [mm]\Leftrightarrow 2^{(5x+3)+[(x-1)-(-2x+4)]}=2^{2\cdot(-x-6)}[/mm]
>  
> Jetzt kannst du die Exponenenten gleichsetzen, es gilt
> also:
>  
> [mm](5x+3)+[(x-1)-(-2x+4)]=2\cdot(-x-6)[/mm]

Die Multiplikation und Division der Potenzen mittels Addition, bzw. Subtraktion der Exponenten konnte ich nachvollziehen.

Jetzt zum Gleichsetzen der Exponenten:
Beim Auflösen der Klammern (und das war auch immer einer meiner Stolpersteine...) käme nach meiner Rechnung das heraus:  

[mm](5x+3)+[(x-1)-(-2x+4)]=2\cdot(-x-6)[/mm]
[mm]5x+3+3x-5 = -2x-12[/mm]
[mm]8x-2 = -2x-12[/mm]

Ist das bis hier überhaupt richtig?
Wenn ja, wie geht es jetzt weiter?
Wenn nein, wo liegt der Fehler?

Über eine auch für "Matheverzweifler" verständliche Erklärung würde ich mich freuen.

Schönen Gruß
mmhkt

Bezug
                        
Bezug
Exponentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Fr 03.06.2011
Autor: M.Rex

Hallo

> Guten Morgen,
>  auch wenn ich schon lange aus der Schule heraus bin,
> interessiert mich diese Aufgabe doch.
>  Erstens weil ich selbst damit immer zu kämpfen hatte und
> zweitens gelegentlich familiäre Hausaufgabenhilfe gefragt
> ist.
>  
>
> > Sinnvoller ist es, erstmal ein wenig die Potenzgesetze zu
> > bemühen, es gilt:
>  >  
> > [mm]2^{5x + 3}\cdot\bruch{2^{x-1}}{2^{-2x + 4}}=4^{-x - 6}[/mm]
>  >

>  
> > [mm]\Leftrightarrow 2^{(5x+3)}\cdot2^{[(x-1)-(-2x+4)]}=(2^{2})^{(-x-6)}[/mm]
>  
> >  

> > [mm]\Leftrightarrow 2^{(5x+3)+[(x-1)-(-2x+4)]}=2^{2\cdot(-x-6)}[/mm]
>  
> >  

> > Jetzt kannst du die Exponenenten gleichsetzen, es gilt
> > also:
>  >  
> > [mm](5x+3)+[(x-1)-(-2x+4)]=2\cdot(-x-6)[/mm]
>  
> Die Multiplikation und Division der Potenzen mittels
> Addition, bzw. Subtraktion der Exponenten konnte ich
> nachvollziehen.
>  
> Jetzt zum Gleichsetzen der Exponenten:
>  Beim Auflösen der Klammern (und das war auch immer einer
> meiner Stolpersteine...) käme nach meiner Rechnung das
> heraus:  
>
> [mm](5x+3)+[(x-1)-(-2x+4)]=2\cdot(-x-6)[/mm]
>  [mm]5x+3+3x-5 = -2x-12[/mm]
>  [mm]8x-2 = -2x-12[/mm]
>  
> Ist das bis hier überhaupt richtig?

Ja

>  Wenn ja, wie geht es jetzt weiter?

Sortieren wir die Terme mal:
$ 8x-2 = -2x-12 $
[mm] $\Leftrightarrow [/mm] 8x+2x = -12+2$
[mm] $\Leftrightarrow [/mm] 10x = -10$
[mm] $\Leftrightarrow [/mm] x = -1$

Eine Anleitung zum Lösen Linearer Gleichungen gibt es []hier

>  Wenn nein, wo liegt der Fehler?

Bisher gab es keinen ;-)

>  
> Über eine auch für "Matheverzweifler" verständliche
> Erklärung würde ich mich freuen.
>  
> Schönen Gruß
>  mmhkt

Marius


Bezug
                                
Bezug
Exponentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:53 Fr 03.06.2011
Autor: mmhkt

Hallo Marius,
ich bedanke mich auf das Schärfste für die schnelle Antwort!

Schönen Gruß
mmhkt

Bezug
                                        
Bezug
Exponentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:32 Fr 03.06.2011
Autor: Al-Chwarizmi


> Hallo Marius,
>  ich bedanke mich auf das Schärfste für die schnelle
> Antwort!
>  
> Schönen Gruß
> mmhkt


Hallo mmhkt,

ich versuche nur gerade, mir vorzustellen, wie so ein
messer- oder rattenscharfes "Dankeschön" klingen
würde, wenn du es mal per Audio durchgeben würdest ...

LG     ;-)


Bezug
                                                
Bezug
Exponentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:49 Fr 03.06.2011
Autor: mmhkt

Grüezi,
das war eine Formulierung, die ein Werkstattmeister, den ich sehr schätzte, vor vielen Jahren gelegentlich gebrauchte.

Und weil mir die Feinheiten der Sprache schon immer viel geläufiger und eingängiger waren als die der Mathematik, konnte ich mir den Spruch natürlich viel besser merken also solche "merkwürdigen" (eigentlich sind sie es ja im wahrsten Sinne des Wortes!) Dinge wie Potenzgesetze und Klammerauflösungsregeln.

Audio wird diese Formulierung genauso verwendet wie sie da steht: "Ich bedanke mich auf das Schärfste!", nicht bloß so ein einfaches "Danke".
Mimik und Betonung dürfen dabei ruhig ins Ernste und Sparsame spielen, vielleicht eine leicht gehobene Augenbraue...

Schönen Gruß
mmhkt

Bezug
                
Bezug
Exponentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Fr 03.06.2011
Autor: Ayu_Colin

Hallo,

vielen Dank für die schnelle Hilfe! (:
An die Potenzgesetze hatte ich erst gar nicht gedacht, aber jetzt hab ich es doch verstanden und kann den Lösungsweg auch nachvollziehen.  

Also danke nochmal und schönen Abend noch. (:

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]