www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exponentialfunktionen
Exponentialfunktionen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktionen: Begründung
Status: (Frage) beantwortet Status 
Datum: 19:42 Di 28.11.2006
Autor: Melli1988

Aufgabe
Entscheiden sie ob für die Funktion f mit f(x)= [mm] a*3^x, [/mm] a aus den reelen Zahlen die folgenden Aussagen richtig, falsch oder nicht entscheidbar sind. Geben sie jeweils eine Begründung an.

1. Ist g(x) [mm] =a*b^x [/mm] mit b>3 so gilt stets g(x)>f(x).
2. Für den Funktionswert f(x+2) gilt immer: [mm] f(x+2)=3^2*f(x). [/mm]
3. Für den Funktionswert f(2x) gilt immer: [mm] f(2x)=(f(x))^2 [/mm]
4. Zum an der y-Achse gespiegelten Graphen der Funktion f existiert ebenfalls eine Funktion. Dies ist die Funktion h mit [mm] h(x)=a*(-3)^x [/mm]

Sooo, ich hab das in meinem Mathebuch gefunden. Ich hab versucht mir selbst Begründungen dafür zu geben, aber habe einfach keine stichhaltigen gefunden...


Ist hier jemand der mir da weiterhelfen kann?

Liebe Grüße, Melli

        
Bezug
Exponentialfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Di 28.11.2006
Autor: M.Rex

Hallo Melli

> Entscheiden sie ob für die Funktion f mit f(x)= [mm]a*3^x,[/mm] a
> aus den reelen Zahlen die folgenden Aussagen richtig,
> falsch oder nicht entscheidbar sind. Geben sie jeweils eine
> Begründung an.
>  
> 1. Ist g(x) [mm]=a*b^x[/mm] mit b>3 so gilt stets g(x)>f(x).

Schreib das doch mal hin.

[mm] a*\underbrace{b}_{>3}^{x}>a*3^{x} [/mm]
[mm] \gdw b^{x}>3^{x} [/mm]

Jetzt mach am besten eine Falluterscheidung:
ist x>0, so gilt:

b>3, was ja die Bedingung ist.

Ist x<0, so gilt:

[mm] b^{x}>3^{x} [/mm] nach Voraussetzung oben.
Aber jetzt:
[mm] \bruch{1}{b^{-x}}>\bruch{1}{3^{-x}} [/mm]

-x ist nun ja >0, also passt die Aussage für x<0 nicht mehr.

Gegenbeispiel:
[mm] \bruch{1}{16}=\bruch{1}{4²}\not{>}\bruch{1}{3²}=\bruch{1}{9} [/mm]

>  2. Für den Funktionswert f(x+2) gilt immer:
> [mm]f(x+2)=3^2*f(x).[/mm]

Schreib doch mal f(x+2) hin:
[mm] f(x+2)=a*3^{x+2} [/mm] und wende jetzt die Potenzgesetze an. Kommst du auf [mm] \underbrace{3²*a*3^{x}}_{=3²*f(x)}? [/mm]

>  3. Für den Funktionswert f(2x) gilt immer: [mm]f(2x)=(f(x))^2[/mm]

Selbe Prinzip wie Aufgabe 2.

ist [mm] f(2x)=a*e^{2x}=(f(x))²? [/mm]

>  4. Zum an der y-Achse gespiegelten Graphen der Funktion f
> existiert ebenfalls eine Funktion. Dies ist die Funktion h
> mit [mm]h(x)=a*(-3)^x[/mm]

Probieren:
Für die Achsensymmetrie zur x-Achse gilt ja:
f(-x)=f(x)

Und ein wenig weiterüberlegen. Was muss den jetzt gelten? Kannst du das Prüfen?

[...]

> Liebe Grüße, Melli

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]