www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exponentialfunktion
Exponentialfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:46 Mi 29.06.2005
Autor: Beavis

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo
Ich muss morgen in Mathe eine Aufgabe an der Tafel vorrechnen und bin mir nicht sicher ob ich richtig gerechnet habe. Könnte mir bitte jemand helfen und mir schreiben ob die Aufgabe richtig ist?


Hier die Aufgabenstellung:

Die Graphen mit y = [mm] e^{x} [/mm] -0,5 und y = [mm] e^{-x} [/mm] -0,5 und die x-Achse begrenzen eine Fläche vollständig. Berechnen Sie den Inhalt! Skizze (1
LE [mm] \hat= [/mm] 2cm)!


Und hier meine Rechnung:

f(x) = [mm] e^{x} [/mm] -0,5
f(x) = 0
[mm] e^{x} [/mm] -0,5 = 0
[mm] e^{x} [/mm] = 0,5  / ln
x = ln 0,5

g(x) = [mm] e^{-x} [/mm] -0,5
g(x) = 0
[mm] e^{-x} [/mm] - 0,5 = 0
[mm] e^{-x} [/mm] = 0,5  / ln
-x = ln 0,5
x = - ln 0,5

A = [mm] \integral_{ln 0,5}^{-ln 0,5} {e^{x} -0,5 dx} [/mm] + [mm] \integral_{ln 0,5}^{- ln 0,5} {e^{-x} -0,5 dx} [/mm]
   = [mm] e^{-ln 0,5} [/mm] - 0,5  [mm] \* [/mm] (-ln 0,5) - [mm] (e^{ln 0,5} [/mm] - 0,5 [mm] \* [/mm] ln 0,5)
   = -0,5 + 0,5 [mm] \* [/mm] ln 0,5 - 0,5 + 0,5 + 0,5 [mm] \* [/mm] ln 0,5
   = -1 + ln 1
   = -1

Außerdem muss ich noch eine Skizze auf Folie drucken. Weiß aber nicht wie ich die Skizze am Computer machen soll. Ich habe leider nicht das nötige Programm.
MFG Sebastian
und Danke im voraus

        
Bezug
Exponentialfunktion: FunkyPlot
Status: (Antwort) fertig Status 
Datum: 21:54 Mi 29.06.2005
Autor: informix

Hallo Sebastian,
[willkommenmr]

zunächst nur ganz schnell:
mein Lieblingsprogramm zum Zeichnen von Funktionen ist:
[]Funkyplot, das hat der Gründer dieses Forums geschrieben!
Einfach runterladen und sich freuen. ;-)

Du kannst bei Flächenberechnung auch die Symmetrie des Ganzen ausnutzen!


Bezug
        
Bezug
Exponentialfunktion: Korrekturen + Tipps
Status: (Antwort) fertig Status 
Datum: 22:05 Mi 29.06.2005
Autor: Loddar

Hallo Beavis!


> Die Graphen mit y = [mm]e^{x}[/mm] -0,5 und y = [mm]e^{-x}[/mm] -0,5 und die
> x-Achse begrenzen eine Fläche vollständig. Berechnen Sie
> den Inhalt! Skizze (1 LE [mm]\hat=[/mm] 2cm)!
>  
>
> Und hier meine Rechnung:
>  
> f(x) = [mm]e^{x}[/mm] -0,5
> f(x) = 0
> [mm]e^{x}[/mm] -0,5 = 0
> [mm]e^{x}[/mm] = 0,5  / ln
> x = ln 0,5

[ok]


  

> g(x) = [mm]e^{-x}[/mm] -0,5
> g(x) = 0
> [mm]e^{-x}[/mm] - 0,5 = 0
> [mm]e^{-x}[/mm] = 0,5  / ln
> -x = ln 0,5
> x = - ln 0,5

[ok]


  

> A = [mm]\integral_{ln 0,5}^{-ln 0,5} {e^{x} -0,5 dx}[/mm] + [mm]\integral_{ln 0,5}^{-ln 0,5} {e^{-x} -0,5 dx}[/mm]

[notok] Du mußt ja als weitere Integrationsgrenze Dir zunächst noch den Schnittpunkt der beiden Kurven ermitteln.

Der entsprechende x-Wert [mm] $x_s$ [/mm] ist dann (wie bereits angedeutet) die Integrationsgrenze, die diese beiden Teilflächen miteinander verbindet (siehe auch Skizze unten)!



> Außerdem muss ich noch eine Skizze auf Folie drucken. Weiß
> aber nicht wie ich die Skizze am Computer machen soll. Ich
> habe leider nicht das nötige Programm.

Das Programm []FunkyPlot hat Dir ja informix bereits empfohlen.


Jedenfalls würde es damit ungefähr so aussehen ...

[Dateianhang nicht öffentlich]


Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]