www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Exponential und Logarithmusfkt
Exponential und Logarithmusfkt < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponential und Logarithmusfkt: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 18:29 Di 01.07.2014
Autor: rose1

Aufgabe
Zeigen Sie :
(i) 1+x [mm] \le [/mm] exp(x) für alle x [mm] \in \IR [/mm] und 1+x=exp(x) [mm] \gdw [/mm] x=0
(ii) [mm] \bruch{u-1}{u} \le [/mm] log(u) [mm] \le [/mm] u-1 für alle u [mm] \in ]0,\infty[ [/mm] . Gleichheit gilt genau dann, wenn u=1.

Wir haben in der Vorlesung die Exponentialfunktion durch [mm] exp:\IR \rightarrow ]0,\infty[ [/mm] , x [mm] \to [/mm] exp [mm] :=\summe_{k=0}^{\infty} \bruch{x^k}{k!} [/mm] und den natürlichen Logarithmus [mm] log:]0,\infty[\to \IR [/mm] , [mm] x\to [/mm] log(x) als Umkehrfunktion der Exponentialfunktion.

wie kann ich das zeigen?  was muss ich hier genau machen ?


________________________________________________________
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Exponential und Logarithmusfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Di 01.07.2014
Autor: Richie1401

Hallo,

und von mir ein herzlichen Willkommen im Matheraum!

> Zeigen Sie :
>  (i) 1+x [mm]\le[/mm] exp(x) für alle x [mm]\in \IR[/mm] und 1+x=exp(x) [mm]\gdw[/mm]
> x=0
>  (ii) [mm]\bruch{u-1}{u} \le[/mm] log(u) [mm]\le[/mm] u-1 für alle u [mm]\in ]0,\infty[[/mm]
> . Gleichheit gilt genau dann, wenn u=1.
>  Wir haben in der Vorlesung die Exponentialfunktion durch
> [mm]exp:\IR \rightarrow ]0,\infty[[/mm] , x [mm]\to[/mm] exp
> [mm]:=\summe_{k=0}^{\infty} \bruch{x^k}{k!}[/mm] und den

Na das ist doch super. Wenn ihr die Reihendarstellung habt, dann ist die Aufgabe wirklich recht easy.

Also noch einmal ganz langsam:

Zeigen sollst du zunächst, dass
   [mm] 1+x\le\exp{x} [/mm] für alle [mm] x\in\IR [/mm]

Nun weißt du, dass für [mm] \exp{x} [/mm] gilt: [mm] \exp{x}=\sum_{k=0}^\infty\frac{x^k}{k!}=1+x+x^2+x^3+... [/mm]

Nun kann man sich erst einmal überlegen: Für alle x>0 gilt das offensichtlich auf jeden Fall. Mache dir noch klar, warum das ganze auch für x<0 gilt.


NACHTRAG:
Wenn ihr auch die die Definition mit dem Grenzwert hattet
  
   [mm] \lim_{n\to\infty}(1+x/n)^{n}=e^x [/mm]

Dann kannst du auch mal die Bernoullische Ungleichung bemühen.



Für die Behauptung
   [mm] 1+x=\exp(x)\gdw{}x=0 [/mm]
musst du zwei Richtung zeigen.

[mm] (\Rightarrow) [/mm] ist dabei ein bisschen unangenehmer als die Richtung [mm] (\Leftarrow). [/mm] Probier es einfach mal.

> natürlichen Logarithmus [mm]log:]0,\infty[\to \IR[/mm] , [mm]x\to[/mm]
> log(x) als Umkehrfunktion der Exponentialfunktion.
>  
> wie kann ich das zeigen?  was muss ich hier genau machen ?
>  
>
> ________________________________________________________
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
Exponential und Logarithmusfkt: Korrektur, Tipp
Status: (Frage) beantwortet Status 
Datum: 10:15 Mi 02.07.2014
Autor: rose1

Hallo Richi,
erstmal danke  für deine hilfe.

Ich hab für   [mm] 1+x\le [/mm] exp(x) so gezeigt :

es gilt nach def.  [mm] exp(x)=\summe_{k=0}^{\infty} \bruch{x^k}{k!} [/mm]
                        [mm] =1+x+\bruch{x^2}{2}+... [/mm]
                        > 1+x

dann zur behauptung:
z.z 1+x=exp(x) [mm] \gdw [/mm] x=0

[mm] \Rightarrow [/mm]   Sei 1+x=exp(x) dann gilt       [mm] 1+x=exp(x)=\summe_{k=0}^{\infty} [/mm] ....
                         d.h. 1+x= [mm] 1+x+\summe_{k=2}^{\infty} [/mm] ...
                     durch umstellen bekomme ich dann [mm] 0=\bruch{x^2}{2!}+..... [/mm]
                    somit ist dann x=0.

[mm] \Leftarrow [/mm]  
          hier nehme ich an,dass x=0 ist und setze in die gleichung    
            dann ist das ergebnis exp(0)       .


wäre das richtig so ?


Bezug
                        
Bezug
Exponential und Logarithmusfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 11:12 Mi 02.07.2014
Autor: fred97


> Hallo Richi,
> erstmal danke  für deine hilfe.
>
> Ich hab für   [mm]1+x\le[/mm] exp(x) so gezeigt :
>  
> es gilt nach def.  [mm]exp(x)=\summe_{k=0}^{\infty} \bruch{x^k}{k!}[/mm]
>  
>                         [mm]=1+x+\bruch{x^2}{2}+...[/mm]
>                          > 1+x

Das letzte ">" ist klar für x>0. Zeigen sollst Du auch noch: exp(x) [mm] \ge [/mm] 1+x für x [mm] \le [/mm] 0.


>  
> dann zur behauptung:
>  z.z 1+x=exp(x) [mm]\gdw[/mm] x=0
>  
> [mm]\Rightarrow[/mm]   Sei 1+x=exp(x) dann gilt      
> [mm]1+x=exp(x)=\summe_{k=0}^{\infty}[/mm] ....
>                           d.h. 1+x=
> [mm]1+x+\summe_{k=2}^{\infty}[/mm] ...
>                       durch umstellen bekomme ich dann
> [mm]0=\bruch{x^2}{2!}+.....[/mm]
>                      somit ist dann x=0.

Wieso folgt daraus x=0  ?????

FRED

>  
> [mm]\Leftarrow[/mm]  
> hier nehme ich an,dass x=0 ist und setze in die gleichung  
>  
> dann ist das ergebnis exp(0)       .
>  
>
> wäre das richtig so ?
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]