www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Explizite Darstellung
Explizite Darstellung < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Explizite Darstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:26 Mo 05.10.2009
Autor: elvis-13.09

Hallo.

Ich habe eine Folge [mm] a_{n} [/mm] rekursive durch [mm] a_{n+1}=a_{n}+\bruch{1}{(2n+1)(2n-1)}. [/mm] und [mm] a_{0}=0. [/mm]

Wie komme ich auf eine explizite Darstellung von [mm] a_{n} [/mm] ?

        
Bezug
Explizite Darstellung: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 00:57 Mo 05.10.2009
Autor: MaRaQ


> Hallo.
>  
> Ich habe eine Folge [mm]a_{n}[/mm] rekursive durch
> [mm]a_{n+1}=a_{n}+\bruch{1}{(2n+1)(2n-1)}.[/mm] und [mm]a_{0}=0.[/mm]
>  
> Wie komme ich auf eine explizite Darstellung von [mm]a_{n}[/mm] ?

Nun, das kannst du hier sogar sehr einfach bestimmen. Du hast ja einen Anfangspunkt mit [mm]a_0 = 0[/mm]

Daraus folgt über die rekursive Definition:

[mm]a_1 = 0 + \bruch{1}{(2n+1)(2n-1)} = \bruch{1}{(2n+1)(2n-1)}[/mm]
[mm]a_2 = a_1 + \bruch{1}{(2n+1)(2n-1)} = \bruch{1}{(2n+1)(2n-1)} + \bruch{1}{(2n+1)(2n-1)} = \bruch{2}{(2n+1)(2n-1)}[/mm]
(...)
Jetzt du. ;-)

Erkennst du ein Muster?

Bezug
                
Bezug
Explizite Darstellung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 01:29 Mo 05.10.2009
Autor: elvis-13.09

meinst du [mm] a_{n}=\bruch{n}{(2n+1)(2n-1)} [/mm] ?

Bezug
                
Bezug
Explizite Darstellung: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 06:08 Mo 05.10.2009
Autor: abakus


> > Hallo.
>  >  
> > Ich habe eine Folge [mm]a_{n}[/mm] rekursive durch
> > [mm]a_{n+1}=a_{n}+\bruch{1}{(2n+1)(2n-1)}.[/mm] und [mm]a_{0}=0.[/mm]
>  >  
> > Wie komme ich auf eine explizite Darstellung von [mm]a_{n}[/mm] ?
>
> Nun, das kannst du hier sogar sehr einfach bestimmen. Du
> hast ja einen Anfangspunkt mit [mm]a_0 = 0[/mm]
>  
> Daraus folgt über die rekursive Definition:
>
> [mm]a_1 = 0 + \bruch{1}{(2n+1)(2n-1)} = \bruch{1}{(2n+1)(2n-1)}[/mm]

Richtig wäre
[mm]a_1 = 0 + \bruch{1}{(2*0+1)(2*0-1)} = -1[/mm]
[mm] a_2 [/mm] = -1+ [mm] \bruch{1}{(2*1+1)(2*1-1)} [/mm] = [mm] -\bruch{2}{3} [/mm]

Beachte lieber, dass sich [mm] \bruch{1}{(2n+1)(2n-1)} [/mm]  in der Form [mm] \bruch{A}{(2n-1)} -\bruch{B}{(2n+1)} [/mm] schreiben lässt. Da sollte sich eine Teleskopsumme ergeben.
Gruß Abakus

>  
> (...)
>  Jetzt du. ;-)
>  
> Erkennst du ein Muster?


Bezug
        
Bezug
Explizite Darstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:16 Mo 05.10.2009
Autor: angela.h.b.


> Hallo.
>  
> Ich habe eine Folge [mm]a_{n}[/mm] rekursive durch
> [mm]a_{n+1}=a_{n}+\bruch{1}{(2n+1)(2n-1)}.[/mm] und [mm]a_{0}=0.[/mm]
>  
> Wie komme ich auf eine explizite Darstellung von [mm]a_{n}[/mm] ?

Hallo,

rechne doch einfach erstmal die ersten 5-10 Folgenglieder aus. Dann kommst Du bestimmt auf eine Idee - ngelawelche Du anschließend mit Induktion beweisen kannst.

Also: wie lauten die ersten Folgenglieder? Wie lautet Deine Vermutung für die explizite Darstellung?

Gruß v. Angela


Bezug
                
Bezug
Explizite Darstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:29 Mo 05.10.2009
Autor: elvis-13.09

Hallo

muss eine kleine Korrektur bzgl. der Aufgabe machen:
Es gilt:
[mm] a_{1}=0 [/mm] und [mm] a_{n+1}=a_{n}+\bruch{1}{(2n+1)(2n-1)}. [/mm]

also die ersten Glieder:
[mm] a_{1}=0 [/mm]
[mm] a_{2}=\bruch{1}{3} [/mm]
[mm] a_{3}=\bruch{1}{3}+\bruch{1}{15}=\bruch{6}{15}=\bruch{2}{5} [/mm]
[mm] a_{4}=\bruch{6}{15}+\bruch{1}{35}=\bruch{45}{105}=\bruch{3}{7} [/mm]

ich hätte ja auf [mm] a_{n}=\bruch{n-1}{2n-1} [/mm] getippt aber sicher bin ich mir da nicht.

Bezug
                        
Bezug
Explizite Darstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:39 Mo 05.10.2009
Autor: fred97


> Hallo
>  
> muss eine kleine Korrektur bzgl. der Aufgabe machen:
>  Es gilt:
>  [mm]a_{1}=0[/mm] und [mm]a_{n+1}=a_{n}+\bruch{1}{(2n+1)(2n-1)}.[/mm]
>  
> also die ersten Glieder:
>  [mm]a_{1}=0[/mm]
>  [mm]a_{2}=\bruch{1}{3}[/mm]
>  
> [mm]a_{3}=\bruch{1}{3}+\bruch{1}{15}=\bruch{6}{15}=\bruch{2}{5}[/mm]
>  
> [mm]a_{4}=\bruch{6}{15}+\bruch{1}{35}=\bruch{45}{105}=\bruch{3}{7}[/mm]
>  
> ich hätte ja auf [mm]a_{n}=\bruch{n-1}{2n-1}[/mm] getippt aber
> sicher bin ich mir da nicht.


Damit liegst Du richtig. Jetzt das ganze mit Induktion beweisen.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]