www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exp und Log
Exp und Log < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exp und Log: Hilfe beim lösen mit ln
Status: (Frage) beantwortet Status 
Datum: 21:25 Do 31.01.2013
Autor: vlue

Aufgabe
Die Geschwindigkeitsabnahme eines Autos kann mit folgender Formel berechnet werden
                  
v(x)=v0*c^(b*(t-t0)

Aus Diagramm : t0=30
v(30)=8m/s t=30
v(40)=4m/s t=40
v(50)=2m/s t=50

In der Angabe stehen bereits einige Teillösungen,

dadurch das t0=30s und v(30)=8m/s
weiß man ja das v0= 8m/s

Jetzt sieht die Gleichung folgend aus : v(x)=8*c^(b*(t-30)

ich habe auch die die 2 restlichen gleichungen aufgestellt

v(40): 4=8*c^(b*(10))
v(50): 2=8*c^(b*(20))

ich habe 2 gleichungen und 2 unbekannte jedoch schaff ich es nicht c oder b zu berechnen, ich habe folgendes versucht

ln(4/8)=10b*lnc
ln(2/8)=20b*lnc

eine von den auf b = ln(2/8) / 20*lnc umgestellt jedoch bekomm ich b oder c nicht heraus bei mir kürzt sich alles raus bis 1=1 rauskommt


vielen dank im vorraus für mögliche Hilfestellungen

        
Bezug
Exp und Log: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Do 31.01.2013
Autor: M.Rex


> Die Geschwindigkeitsabnahme eines Autos kann mit folgender
> Formel berechnet werden
>
> v(x)=v0*c^(b*(t-t0)
>  
> Aus Diagramm : t0=30
>  v(30)=8m/s t=30
>  v(40)=4m/s t=40
>  v(50)=2m/s t=50
>  In der Angabe stehen bereits einige Teillösungen,
>  
> dadurch das t0=30s und v(30)=8m/s
> weiß man ja das v0= 8m/s
>  
> Jetzt sieht die Gleichung folgend aus : v(x)=8*c^(b*(t-30)
>  
> ich habe auch die die 2 restlichen gleichungen aufgestellt
>  
> v(40): 4=8*c^(b*(10))
>  v(50): 2=8*c^(b*(20))

Wir haben also:

[mm] $4=8\cdot c^{10b}$ [/mm]
und
[mm] $2=8\cdot c^{20b}$ [/mm]

Formen wir einmal um, ergeben sich


[mm] $\frac{1}{2}=c^{10b}$ [/mm]
und
[mm] $\frac{1}{4}=c^{20b}$ [/mm]

Das Problem ist, dass Gleichung 2 das Quadrat von Gleichung 1 ist, daher wirst du so oder so Probleme bekommen, dieses Gleichungssystem analytisch zu lösen.


>  
> ich habe 2 gleichungen und 2 unbekannte jedoch schaff ich
> es nicht c oder b zu berechnen, ich habe folgendes
> versucht
>  
> ln(4/8)=10b*lnc
>  ln(2/8)=20b*lnc

>  
> eine von den auf b = ln(2/8) / 20*lnc umgestellt jedoch
> bekomm ich b oder c nicht heraus bei mir kürzt sich alles
> raus bis 1=1 rauskommt
>  
>
> vielen dank im vorraus für mögliche Hilfestellungen  

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]