Existenz lineare Abb. UnivEig. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:11 Fr 21.01.2011 | Autor: | Sujentha |
Aufgabe | Seien [mm]V_i[/mm] und [mm]W_i[/mm] Vektorräume über einem Körper K, wobei [mm]i \in \{1,2\}[/mm].
Seien zwei lineare Abbildungen [mm]V_1 \stackrel{\varphi_1}{\rightarrow} W_1[/mm] und [mm]V_2 \stackrel{\varphi_2}{\rightarrow} W_2[/mm] gegeben.
Nutzen Sie die Universaleigenschaft des Tensorproduktes aus, um die Existenz einer K-linearen Abbildung
[mm]\varphi_1 \otimes \varphi_2: V_1 \otimes_K V_2 \to W_1 \otimes_K W_2[/mm]
mit
[mm]\varphi_1 \otimes \varphi_2(v_1 \otimes v_2)=\varphi_1(v_1) \otimes \varphi_2(v_2)[/mm]
zu beweisen. |
Hallo,
also ich habe es folgendermaßen gemacht:
Man betrachte die Abbildung:
[mm]\varphi_1 \times \varphi_2: V_1 \times V_2 \to W_1 \otimes W_2[/mm] definiert durch
[mm](\varphi_1 \times \varphi_2)(v_1,v_2)=\varphi_1(v_1) \otimes \varphi_2(v_2)[/mm]
Zu zeigen: Diese Abbildung ist bilinear.
(i) [mm](\varphi_1 \times \varphi_2)(v_1+v_1',v_2)=\varphi_1(v_1+v_1') \otimes \varphi_2(v_2)[/mm]
[mm]=\varphi_1(v_1) \otimes \varphi_2(v_2)+ \varphi_1(v_1') \otimes \varphi_2(v_2)[/mm]
[mm]=(\varphi_1 \times \varphi_2)(v_1,v_2)+(\varphi_1 \times \varphi_2)(v_1',v_2)[/mm]
(ii) [mm](\varphi_1 \times \varphi_2)(v_1,v_2+v_2')=\varphi_1(v_1) \otimes \varphi_2(v_2+v_2')[/mm]
[mm]=\varphi_1(v_1) \otimes \varphi_2(v_2)+ \varphi_1(v_1) \otimes \varphi_2(v_2')[/mm]
[mm]=(\varphi_1 \times \varphi_2)(v_1,v_2)+(\varphi_1 \times \varphi_2)(v_1,v_2')[/mm]
(iii)[mm] (\varphi_1 \times \varphi_2)(\lambda v_1,v_2)=\varphi_1 (\lambda v_1) \otimes \varphi_2(v_2)[/mm]
[mm]=\lambda (\varphi_1(v_1) \times \varphi_2(v_2))[/mm]
[mm]=\lambda (\varphi_1 \times \varphi_2) (v_1,v_2)[/mm]
(iv)[mm] (\varphi_1 \times \varphi_2)(v_1,\lambda v_2)=\varphi_1 (v_1) \otimes \varphi_2(\lambda v_2)[/mm]
[mm]=\lambda (\varphi_1(v_1) \times \varphi_2(v_2))[/mm]
[mm]=\lambda (\varphi_1 \times \varphi_2) (v_1,v_2)[/mm]
Die Universaleigenschaft sagt aus:
V,W seien 2 K-Vektorräume.Dann ist ein Tensorprodukt [mm](X,\varphi)[/mm] von V und W ein Vektorraum X zusammen mit einer bilinearen Abbildung [mm]\varphi:V \times W \to X[/mm], die folgende universelle Eigenschaft erfüllen: Ist Y ein Vektorraum und [mm]\psi: V \times W \to Y[/mm] eine bilineare Abbildung, dann gibt es genau eine lineare Abbildung [mm]F:X \to Y[/mm] mit [mm]\varphi \circ F= \psi[/mm]
Auf die Aufgabe angewandt ergibt das:
[mm]X=V_1 \otimes V_2[/mm]
[mm]Y=W_1 \otimes W_2[/mm]
[mm]F=\varphi_1 \otimes \varphi_2[/mm]
[mm]\varphi_1(v_1) \otimes \varphi_2(v_2)[/mm]
[mm]=(\varphi_1 \times \varphi_2)(v_1,v_2)[/mm]
[mm]=(\varphi_1 \otimes \varphi_2)(v_1 \otimes v_2)[/mm]
Somit ist die Existenz bewiesen.
[mm]\Box[/mm]
Okay, wäre echt super, wenn ihr mir sagen könntet,ob das so richtig ist (ich weiß,ich hab viel geschrieben,aber kürzer ging's nich ) und falls nicht,mir Lösungstipps geben könntet. Schon mal vielen Dank im Voraus.
Gruß Sujentha.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:03 Fr 21.01.2011 | Autor: | Lippel |
Hallo,
> also ich habe es folgendermaßen gemacht:
>
> Man betrachte die Abbildung:
> [mm]\varphi_1 \times \varphi_2: V_1 \times V_2 \to W_1 \otimes W_2[/mm]
> definiert durch
> [mm](\varphi_1 \times \varphi_2)(v_1,v_2)=\varphi_1(v_1) \otimes \varphi_2(v_2)[/mm]
>
> Zu zeigen: Diese Abbildung ist bilinear.
>
> (i) [mm](\varphi_1 \times \varphi_2)(v_1+v_1',v_2)=\varphi_1(v_1+v_1') \otimes \varphi_2(v_2)[/mm]
[mm]= \red{(\varphi_1(v_1)+\varphi_1(v_1')) \otimes \varphi_2(v_2)}[/mm]
> [mm]=\varphi_1(v_1) \otimes \varphi_2(v_2)+ \varphi_1(v_1') \otimes \varphi_2(v_2)[/mm]
>
> [mm]=(\varphi_1 \times \varphi_2)(v_1,v_2)+(\varphi_1 \times \varphi_2)(v_1',v_2)[/mm]
>
> (ii) [mm](\varphi_1 \times \varphi_2)(v_1,v_2+v_2')=\varphi_1(v_1) \otimes \varphi_2(v_2+v_2')[/mm]
[mm]\red{ = \varphi_1(v_1) \otimes (\varphi_2(v_2)+\varphi_2(v_2'))}[/mm]
> [mm]=\varphi_1(v_1) \otimes \varphi_2(v_2)+ \varphi_1(v_1) \otimes \varphi_2(v_2')[/mm]
>
> [mm]=(\varphi_1 \times \varphi_2)(v_1,v_2)+(\varphi_1 \times \varphi_2)(v_1,v_2')[/mm]
>
> (iii)[mm] (\varphi_1 \times \varphi_2)(\lambda v_1,v_2)=\varphi_1 (\lambda v_1) \otimes \varphi_2(v_2)[/mm]
[mm] \red{\ldots} [/mm]
> [mm]=\lambda (\varphi_1(v_1) \times \varphi_2(v_2))[/mm]
> [mm]=\lambda (\varphi_1 \times \varphi_2) (v_1,v_2)[/mm]
>
> (iv)[mm] (\varphi_1 \times \varphi_2)(v_1,\lambda v_2)=\varphi_1 (v_1) \otimes \varphi_2(\lambda v_2)[/mm]
[mm]\red{\ldots}[/mm]
> [mm]=\lambda (\varphi_1(v_1) \times \varphi_2(v_2))[/mm]
> [mm]=\lambda (\varphi_1 \times \varphi_2) (v_1,v_2)[/mm]
>
> Die Universaleigenschaft sagt aus:
> V,W seien 2 K-Vektorräume.Dann ist ein Tensorprodukt
> [mm](X,\varphi)[/mm] von V und W ein Vektorraum X zusammen mit einer
> bilinearen Abbildung [mm]\varphi:V \times W \to X[/mm], die folgende
> universelle Eigenschaft erfüllen: Ist Y ein Vektorraum und
> [mm]\psi: V \times W \to Y[/mm] eine bilineare Abbildung, dann gibt
> es genau eine lineare Abbildung [mm]F:X \to Y[/mm] mit [mm]\varphi \circ F= \psi[/mm]
>
> Auf die Aufgabe angewandt ergibt das:
> [mm]X=V_1 \otimes V_2[/mm]
> [mm]Y=W_1 \otimes W_2[/mm]
> [mm]F=\varphi_1 \otimes \varphi_2[/mm]
>
> [mm]\varphi_1(v_1) \otimes \varphi_2(v_2)[/mm]
> [mm]=(\varphi_1 \times \varphi_2)(v_1,v_2)[/mm]
>
> [mm]=(\varphi_1 \otimes \varphi_2)(v_1 \otimes v_2)[/mm]
>
> Somit ist die Existenz bewiesen.
>
> [mm]\Box[/mm]
>
> Okay, wäre echt super, wenn ihr mir sagen könntet,ob das
> so richtig ist (ich weiß,ich hab viel geschrieben,aber
> kürzer ging's nich ) und falls nicht,mir Lösungstipps
> geben könntet. Schon mal vielen Dank im Voraus.
>
Das sieht alles ziemlich gut aus, nur eine Anmerkung habe ich. Oben habe ich rot matrkiert wo man beim Nachrrechnen der Bilinearität noch einen Zwischenschritt einfügen könnte, um klarer zu machen, dass du erst die Linearität der Abbildungen [mm] $\varphi_1$ [/mm] und [mm] $\varphi_2$ [/mm] ausnutzt und danach die Rechenregeln fürs Tensorprodukt anwendest.
Ansonsten top
LG Lippel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:44 Sa 22.01.2011 | Autor: | Sujentha |
Danke,dann füge ich noch ein paar Zwischenschritte ein.
LG Sujentha.
|
|
|
|