www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Existenz eines Grenzwertes
Existenz eines Grenzwertes < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz eines Grenzwertes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 Do 26.01.2006
Autor: kuminitu

Aufgabe
Gegeben seien die Funktion f:[a, b] [mm] \to\IR [/mm]  und ein Punkt [mm] a Zeigen Sie, dass der linksseitige Grenzwert  
[mm] \limes_{x\to x_{0}^{-}} [/mm] f(x) genau dann existiert, wenn es für alle  [mm] \varepsilon [/mm]  > 0 ein 
[mm] \partial \in [/mm] (0 [mm] ,x_{0} [/mm] -a) mit
|f(s) − f(t)| < [mm] \varepsilon [/mm] für alle s, t [mm] \in (x_{0} [/mm] − [mm] \partial, x_{0}) [/mm]
gibt.

Hallo,

ich habe mich gerade mit dieser Aufgabe auseinander gesetzt,
habe aber leider keine Ahnung wie ich da rangehen soll.
Ich weiss ja, dass ich irgendwie den linksseitigen Grenzwert zeigen soll,
komme aber mit der Fülle der Argumente nicht mehr klar.

Würde mich freuen,wenn mir jemand sagen könnte wie man da rangehen
sollte,

MFG
Kuminitu

        
Bezug
Existenz eines Grenzwertes: Antwort
Status: (Antwort) fertig Status 
Datum: 10:43 Fr 27.01.2006
Autor: mathiash

Hallo Kuminitu,

also mag sein, dass ich was uebersehe, aber da steht doch in der Aufgabenstellung
schon nichts anderes drin als die Definition der linsseitigen Stetigkeit.

Vielleicht solltest Du, da zumindest mir nicht klar ist, welche Definitionen Du schon kennst,
nochmal schreiben, was in Deiner Terminologie Konvergenz von links heisst, vielleicht koennen wir Dir dann genauer weiterhelfen.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]