www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Existenz einer Lösung PDGL
Existenz einer Lösung PDGL < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz einer Lösung PDGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Fr 18.11.2011
Autor: gaylussac0815

Aufgabe
Es sei [mm] \Omega = \left \{ x\in \mathbb{R}^{2}\mid \left \| x \right \|< 1 \right \}[/mm]. Zeigen Sie, daß das Randwertproblem

[mm]\nabla^2 u(x) - 2u(x) = f(x)\qquad x\in \Omega [/mm]
[mm] u(x) = g(x)\qquad x\in \partial \Omega [/mm]

höchstens eine Lösung [mm]u \in C^2(\Omega)[/mm] besitzt.


Hallo Zusammen,

ich habe nach langem Kopfzerbrechen nicht wirklich einen Ansatz gefunden,  diese Aufgabe zu lösen. Aus naheliegenden Gründen vermute ich, dass ich die 1. Greensche Formel benutzen muss.
Im Speziellen macht es mir Probleme zu zeigen dass es höchstens eine Lösung gibt. Lösungen div. PDGL zu bestimmen ist mir meisten ohne große Probleme möglich.

Ich bin für jede Antwort dankbar!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Besten Gruß
gaylussac0815

        
Bezug
Existenz einer Lösung PDGL: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Fr 18.11.2011
Autor: rainerS

Hallo gaylussac0815!


> Es sei [mm]\Omega = \left \{ x\in \mathbb{R}^{2}\mid \left \| x \right \|< 1 \right \}[/mm].

> Zeigen Sie, daß das Randwertproblem
>  
> [mm]\nabla^2 u(x) - 2u(x) = f(x)\qquad x\in \Omega [/mm]
>  [mm]u(x) = g(x)\qquad x\in \partial \Omega [/mm]
>  
> höchstens eine Lösung [mm]u \in C^2(\Omega)[/mm] besitzt.
>  
> Hallo Zusammen,
>  
> ich habe nach langem Kopfzerbrechen nicht wirklich einen
> Ansatz gefunden,  diese Aufgabe zu lösen. Aus
> naheliegenden Gründen vermute ich, dass ich die 1.
> Greensche Formel benutzen muss.
> Im Speziellen macht es mir Probleme zu zeigen dass es
> höchstens eine Lösung gibt. Lösungen div. PDGL zu
> bestimmen ist mir meisten ohne große Probleme möglich.
>
> Ich bin für jede Antwort dankbar!

Die Methode ist immer dieselbe: du nimmst an, es gebe zwei Lösungen $u,v$ und zeigst, dass sie gleich sind.

Hier ist es am besten, $w=u-v$ für beide Funktionen der ersten Greenschen Formel einzusetzen.

  Viele Grüße
    Rainer

Bezug
                
Bezug
Existenz einer Lösung PDGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 So 20.11.2011
Autor: gaylussac0815

Ok, mittlerweile glaube ich verstanden zu haben worum es geht, nämlich zu zeigen, dass Dirichlet Probleme genau eine Lösung besitzen.
Dies folgt wohl aus dem Maximumprinzip, angewandt auf die Differenz zweier Lösungen (ist es das was du ,Rainer, meinst?).

>  
> Hier ist es am besten, [mm]w=u-v[/mm] für beide Funktionen der
> ersten Greenschen Formel einzusetzen.

Für den Fall, wo [mm]\Omega[/mm]
ein Kompaktum mit stückweise glattem Rand ist,
kann man es auch mittels der Greenschen Formel beweisen. Leider habe ich keine Vorstellung wie ich z.B. die Differenz in die Greenschen Formel einsetze.
Ich stehe wieder/noch auf dem Schlauch.

BG
gaylussac


Bezug
                        
Bezug
Existenz einer Lösung PDGL: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 Mo 21.11.2011
Autor: rainerS

Hallo!

> Ok, mittlerweile glaube ich verstanden zu haben worum es
> geht, nämlich zu zeigen, dass Dirichlet Probleme genau
> eine Lösung besitzen.
>  Dies folgt wohl aus dem Maximumprinzip, angewandt auf die
> Differenz zweier Lösungen (ist es das was du ,Rainer,
> meinst?).

Nein, siehe unten.

> >  

> > Hier ist es am besten, [mm]w=u-v[/mm] für beide Funktionen der
> > ersten Greenschen Formel einzusetzen.
>  
> Für den Fall, wo [mm]\Omega[/mm]
>  ein Kompaktum mit stückweise glattem Rand ist,
>  kann man es auch mittels der Greenschen Formel beweisen.

In der vorliegenden PDGL ist [mm] $\overline\Omega$ [/mm] kompakt mit glattem Rand.

> Leider habe ich keine Vorstellung wie ich z.B. die
> Differenz in die Greenschen Formel einsetze.

Da alle Lösungen auf dem Rand [mm] $\partial\Omega$ [/mm] gleich sein müssen, ist die Differenz w zweier Lösungen auf dem Rand [mm] $\partial\Omega$ [/mm] gleich 0.

Aus der PDGL folgt [mm] $\Delta [/mm] w = 2w$ .

Setze ich w für beide Funktionen in die 1. Greensche Formel ein, so verschwindet das Randintegral auf der rechten Seite, und es bleibt

[mm] \integral_\Omega (w\Delta w + (\nabla w)^2 = 0 [/mm] .

Der Integrand ist stetig, also muss er auf [mm] $\Omega$ [/mm] identisch verschwinden.

Da [mm] $(\nabla w)^2 \ge [/mm] 0$ und [mm] $\Delta [/mm] w=2w$, folgt:

[mm] w = 0 [/mm] und [mm] \nabla w = 0 [/mm] auf [mm] $\Omega$. [/mm]

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]