www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Existenz Strahl zu zeigen
Existenz Strahl zu zeigen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz Strahl zu zeigen: zusammenhängende Mannigfaltigk
Status: (Frage) beantwortet Status 
Datum: 11:19 Fr 04.07.2014
Autor: pablovschby

Aufgabe
Betrachte eine vollständige zusammenhängende Mannigfaltigkeit M, die nicht kompakt ist. Sei x [mm] \in [/mm] M. Zeigen Sie
1) Es gibt eine Folge [mm] $x_n \in [/mm] M$ mit [mm] $d(x,x_n) \to \infty [/mm] $ für $ n [mm] \to \infty$ [/mm]
2) Es existiert ein Strahl $s: [mm] [0,\infty) \to [/mm] M$ mit s(0)=x


Zu 1)
vollständig: Jede Cauchy-Folge konvergiert gegen einen Grenzwert in M
nicht kompakt?
Wenn M kompakt wäre besitzte jede Folge in M eine in M konvergente Teilfolge?

Wie drehe ich das um? Es existiert eine Folge in M, die in M nicht konvergiert? Also muss [mm] d(x,x_i)=\infty [/mm] sein? Wie ist das formal korrekt auszudrücken?

Zu 2)
Ein Strahl ist eine Halbgerade. Geometrisch geht dieser Strahl von x nach [mm] $lim_{n\to\infty} x_n$ [/mm] ?

Weiss hier jemand von euch bitte Rat, wie man hier vorgeht?

        
Bezug
Existenz Strahl zu zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Fr 04.07.2014
Autor: fred97


> Betrachte eine vollständige zusammenhängende
> Mannigfaltigkeit M, die nicht kompakt ist. Sei x [mm]\in[/mm] M.
> Zeigen Sie
>  1) Es gibt eine Folge [mm]x_n \in M[/mm] mit [mm]d(x,x_n) \to \infty[/mm]
> für [mm]n \to \infty[/mm]
>  2) Es existiert ein Strahl [mm]s: [0,\infty) \to M[/mm]
> mit s(0)=p
>  Zu 1)
>  vollständig: Jede Cauchy-Folge konvergiert gegen einen
> Grenzwert in M
>  nicht kompakt?
> Wenn M kompakt wäre besitzte jede Folge in M eine in M
> konvergente Teilfolge?
>  
> Wie drehe ich das um? Es existiert eine Folge in M, die in
> M nicht konvergiert? Also muss [mm]d(x,x_i)=\infty[/mm] sein?

Unsinn !!!

Die Negation von

"Es gibt eine Folge $ [mm] x_n \in [/mm] M $ mit $ [mm] d(x,x_n) \to \infty [/mm] $ für $ n [mm] \to \infty [/mm] $ "

lautet:

für Folge [mm] (x_n) [/mm] in M gilt: die reelle Folge [mm] (d(x,x_n)) [/mm] enthält eine beschränkte Teilfolge.


>  Wie
> ist das formal korrekt auszudrücken?
>  
> Zu 2)
>  Ein Strahl ist eine Halbgerade. Geometrisch geht dieser
> Strahl von x nach [mm]lim_{n\to\infty} x_n[/mm] ?
>  
> Weiss hier jemand von euch bitte Rat, wie man hier vorgeht?

Vielleicht, wenn Du erzählst, was p ist.

FRED


Bezug
                
Bezug
Existenz Strahl zu zeigen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:46 Fr 04.07.2014
Autor: pablovschby

Danke erstmal :)

Zu 1) Also man nimmt an:

[mm] $d(x,x_n)$ [/mm] enthält eine beschränkte Teilfolge [mm] $d(x,x_{n_k})_{k \in \IN}$ [/mm] ? Das ist aber nach dem Satz von Bolzano-Weierstrass ja schon per Definition der Widerspruch weil wir hier dann einen kompakten metrischen Raum haben... (folgendkompakt)

Ist das aber eine Mannigfaltigkeit und kein metrischen Raum.

Wie ist das sauber zu argumentieren.


Zu 2)
Ja natürlich da ist eben wie oben gesagt p=x gemeint??? Wie muss ich da vorgehen?

Bezug
                        
Bezug
Existenz Strahl zu zeigen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 07.07.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]