Existenz Bilineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:36 Sa 15.01.2011 | Autor: | Sujentha |
Aufgabe | Existiert eine bilineare Abbildung [mm]\alpha: \IR^2 \times \IR^2 \to \mathbb R^2[/mm],so dass
[mm]\alpha \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}[/mm]
[mm]\alpha \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) = \begin{pmatrix} 3 \\ -2 \end{pmatrix}[/mm]
[mm]\alpha \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) = \begin{pmatrix} 8 \\ 7 \end{pmatrix}[/mm]
[mm]\alpha \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) = \begin{pmatrix} 1 \\ 12 \end{pmatrix}[/mm] gilt?
Falls ja,berechnen Sie [mm]\alpha \left(\begin{pmatrix} 2 \\ 1 \end{pmatrix},\begin{pmatrix} 1 \\ 3 \end{pmatrix} \right)[/mm].Ist [mm]\alpha[/mm] symmetrisch oder alternierend? |
Hallo,
mein Problem bei der Aufgabe ist es,dass gefragt wird,ob es so eine Abbildung gibt. Wie zeige ich das?
[mm]\alpha \left(\begin{pmatrix} 2 \\ 1 \end{pmatrix},\begin{pmatrix} 1 \\ 3 \end{pmatrix} \right)[/mm] muss ich ja nur als Linearkombination darstellen,dann kann ich es berechen,oder?
Also erhalte ich da:
[mm]\alpha \left(\begin{pmatrix} 2 \\ 1 \end{pmatrix},\begin{pmatrix} 1 \\ 3 \end{pmatrix} \right) =
\alpha \left(2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}+ 1 \begin{pmatrix} 0 \\ 1 \end{pmatrix},1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) =\alpha \left(2\begin{pmatrix} 1 \\ 0 \end{pmatrix},1\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) + \alpha \left(2\begin{pmatrix} 1 \\ 0 \end{pmatrix},3\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right)+\alpha \left(1\begin{pmatrix} 0 \\ 1 \end{pmatrix},1\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right)+\alpha \left(1\begin{pmatrix} 0 \\ 1 \end{pmatrix},3\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right)=2\alpha\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) +6\alpha\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) +1\alpha\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) +3\alpha\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right)
=2\begin{pmatrix} 1 \\ 2 \end{pmatrix} +6\begin{pmatrix} 3 \\ -2 \end{pmatrix} +1\begin{pmatrix} 8 \\ 7 \end{pmatrix} +3\begin{pmatrix} 1 \\ 12 \end{pmatrix} =\begin{pmatrix} 31 \\ 35 \end{pmatrix}[/mm]
Symmetrisch/Alternierend:
für Symmetrie gilt:
[mm]\alpha(v_1,v_2)=\alpha(v_2,v_1)[/mm]
Alternierend:
[mm]\alpha(v_1,v_2)=-\alpha(v_2,v_1)[/mm]
Somit wäre die Abbildung weder noch,da
$ [mm] \alpha \left(\begin{pmatrix} 2 \\ 1 \end{pmatrix},\begin{pmatrix} 1 \\ 3 \end{pmatrix} \right) \not=\alpha \left(\begin{pmatrix} 1 \\ 3 \end{pmatrix},\begin{pmatrix} 2 \\ 1 \end{pmatrix} \right) \not= -\alpha \left(\begin{pmatrix} 1 \\ 3 \end{pmatrix},\begin{pmatrix} 2 \\ 1 \end{pmatrix} \right)$
[/mm]
Ich hoffe,ihr könnt mir helfen,quäle mich momentan mehr schlecht als recht durch das Thema bilineare Abbildungen.
Gruß,Sujentha.
|
|
|
|
Hallo sujentha,
Du kriegst die explizite Form durch Kombinationen raus...
$ [mm] \alpha \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) [/mm] = [mm] \begin{pmatrix} 1 \\ 2 \end{pmatrix} [/mm] $
[mm] $\Rightarrow \alpha \left(\begin{pmatrix} a \\ 0 \end{pmatrix},\begin{pmatrix} b \\ 0 \end{pmatrix} \right) [/mm] = [mm] \begin{pmatrix} ab \\ 2ab \end{pmatrix} [/mm] $
und
$ [mm] \alpha \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) [/mm] = [mm] \begin{pmatrix} 3 \\ -2 \end{pmatrix} [/mm] $
[mm] $\Rightarrow \alpha \left(\begin{pmatrix} a \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ d \end{pmatrix} \right) [/mm] = [mm] \begin{pmatrix} 3ad \\ -2ad \end{pmatrix} [/mm] $
Daraus folgt dann: $ [mm] \alpha \left(\begin{pmatrix} a \\ 0 \end{pmatrix},\begin{pmatrix} b \\ d \end{pmatrix} \right) [/mm] = [mm] \begin{pmatrix} ab + 3ad \\ 2ab - 2 ad \end{pmatrix} [/mm] $
Wenn du jetzt noch ähnlich mit den anderen beiden Gleichungen verfährst, bekommt du eine explizite Form für
$ [mm] \alpha \left(\begin{pmatrix} a \\ c \end{pmatrix},\begin{pmatrix} b \\ d \end{pmatrix} \right) [/mm] $
An den gegebenen Gleichungen kann man auch erkennen, dass [mm] %\alpha$ [/mm] weder symmetrisch noch alternierend ist.
|
|
|
|
|
Vielen Dank, da bin ich überhaupt nicht drauf gekommen,mit der expliziten Vorschrift lässt sich auch
$ [mm] \alpha \left(\begin{pmatrix} 2 \\ 1 \end{pmatrix},\begin{pmatrix} 1 \\ 3 \end{pmatrix} \right) [/mm] $ viel schneller berechnen.
$ [mm] \alpha \left(\begin{pmatrix} a \\ c \end{pmatrix},\begin{pmatrix} b \\ d \end{pmatrix} \right)= \vektor{ab+3ad+8bc+cd \\ 2ab-2ad+7bc+12cd}$ [/mm] habe ich nun raus.
Eine Frage hab ich noch:muss ich jetzt noch die Axiome für bilineare Abbildungen überprüfen oder ist es klar,dass die Abbildung bilinear ist?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:24 Mo 17.01.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|