www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Evasionsgeschwindigkeit
Evasionsgeschwindigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Evasionsgeschwindigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 Di 19.06.2007
Autor: tteam

Aufgabe
Zur Bestimmung der Evasionsgeschwindigkeitskonstanten a einer Bateman-Funktion wurde ein Wirkstoff intravenös appliziert. In 30-minütigen Abständen wurde der Blutspiegel B gemessen. Üblicherweise wird der Wirkstoff nach dem Muster des exponentiellen Zerfalls abgebaut, d.h. es besteht Zusammenhang der Form B(t) = c x e^-at. Bestimmen sie aus den untenstehenden Messwerten den "Anfangswert" c und die Zerfallskonstante a. (Methode Regressionsgerade)
In der folgenden Tabelle ist die Zeiteinheit 30 Minuten:
t         1       2        3        5        6        7        9
B(t)      900     780      700      550      490      420      320

Wie groß ist die Halbwertszeit des Wirkstoffes?
Wann ist der Blutspiegel unter den Wert 100 gesunken?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Leider habe ich in der Vorlesung zur Bateman-Funktion gefehlt und vorweg mein mathematischer Hintergrund ist nicht so wie er eigentlich sein sollte.

Inzwischen habe ich sogar die Lösung zu der Aufgabe erhalten, allerdings kann ich sie nicht einmal vollständig nachvollziehen. Der Prof. gibt als Lösung zunächst eine Tabelle an, in der er i, [mm] x_i, y_i, Y_i, x_i^2 [/mm] und [mm] x_iY_i [/mm] angibt. Meine erste Frage wäre wie er auf [mm] Y_i [/mm] kommt, zum ersten Wert gibt er z.B. 6,80239476 an. Wie wird das berechnet und warum?

Wir haben in diesem Kurs auch schon die Regressionsgerade gemacht und da wird ja normalerweise mit x, y, [mm] x^2 [/mm] und xy gearbeitet, aber was ist dieses [mm] Y_i? [/mm] Ich denke wenn ich das erst einmal weiss, kann ich das Ganze nachvollziehen. Wäre für Hilfe sehr dankbar, wahrscheinlich ist es sowieso ganz einfach und ich steh einfach aufm Schlauch. Vielen Dank schon mal im Voraus.

        
Bezug
Evasionsgeschwindigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:10 Mo 25.06.2007
Autor: MatthiasKr

Hallo,
> Zur Bestimmung der Evasionsgeschwindigkeitskonstanten a
> einer Bateman-Funktion wurde ein Wirkstoff intravenös
> appliziert. In 30-minütigen Abständen wurde der Blutspiegel
> B gemessen. Üblicherweise wird der Wirkstoff nach dem
> Muster des exponentiellen Zerfalls abgebaut, d.h. es
> besteht Zusammenhang der Form B(t) = c x e^-at. Bestimmen
> sie aus den untenstehenden Messwerten den "Anfangswert" c
> und die Zerfallskonstante a. (Methode Regressionsgerade)
>  In der folgenden Tabelle ist die Zeiteinheit 30 Minuten:
>  t         1       2        3        5        6        7    
>     9
>  B(t)      900     780      700      550      490      420  
>     320
>  
> Wie groß ist die Halbwertszeit des Wirkstoffes?
>  Wann ist der Blutspiegel unter den Wert 100 gesunken?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Leider habe ich in der Vorlesung zur Bateman-Funktion
> gefehlt und vorweg mein mathematischer Hintergrund ist
> nicht so wie er eigentlich sein sollte.
>
> Inzwischen habe ich sogar die Lösung zu der Aufgabe
> erhalten, allerdings kann ich sie nicht einmal vollständig
> nachvollziehen. Der Prof. gibt als Lösung zunächst eine
> Tabelle an, in der er i, [mm]x_i, y_i, Y_i, x_i^2[/mm] und [mm]x_iY_i[/mm]
> angibt. Meine erste Frage wäre wie er auf [mm]Y_i[/mm] kommt, zum
> ersten Wert gibt er z.B. 6,80239476 an. Wie wird das
> berechnet und warum?
>  
> Wir haben in diesem Kurs auch schon die Regressionsgerade
> gemacht und da wird ja normalerweise mit x, y, [mm]x^2[/mm] und xy
> gearbeitet, aber was ist dieses [mm]Y_i?[/mm] Ich denke wenn ich das
> erst einmal weiss, kann ich das Ganze nachvollziehen. Wäre
> für Hilfe sehr dankbar, wahrscheinlich ist es sowieso ganz
> einfach und ich steh einfach aufm Schlauch. Vielen Dank
> schon mal im Voraus.

ich weiß natürlich nicht genau, was dein prof da gemacht hat, aber aus meinem mathematischen bauch heraus würde ich sagen, du solltest deine zusammenhangsfunktion zunächst logarithmieren, um dann für die logarithmierten werte eine regressionsgerade wie üblich zu berechnen.

Wenn

[mm] $B(t)=c\cdot e^{-at}$, [/mm] dann ist ja

[mm] $\ln B(t)=\ln [/mm] c -at$

die logarithmierten messwerte lassen sich also einfach durch eine regressionsgerade annähern. wenn du die hast, erhälst du leicht auch die konstanten für die ursprüngliche funktion.

VG
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]