www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Eulersche Funktion mit ggT = 2
Eulersche Funktion mit ggT = 2 < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulersche Funktion mit ggT = 2: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:12 Sa 07.11.2020
Autor: sancho1980

Aufgabe
Seien m, n [mm] \in \IN, [/mm] und sei ggT(m, n) = 2. Beweisen Sie, dass [mm] \phi(mn) [/mm] = 2 [mm] \phi(m) \phi(n). [/mm]

Hallo,
grübel leider schon wieder mehrere Stunden hierüber.

Verfolge bisher 2 Ansätze:

1) Aus ggT(m, n) = 2 folgt einerseits, dass sowohl die Primfaktorzerlegung von m als auch die von n eine Zweierpotenz [mm] \ge [/mm] 1 enthält, wobei entweder die von m oder die von n genau 1 ist. Sei die Zerlegung von n diejenige, die genau [mm] 2^1 [/mm] enthält. Dann gilt [mm] \phi(\frac{mn}{2}) [/mm] = [mm] \phi(m) \phi(\frac{n}{2}). [/mm] Hier komme ich nicht weiter, weil ich zu keiner allgemeinen Aussage zum Verhältnis [mm] \frac{\phi(\frac{n}{2})}{\phi(n)} [/mm] bzw. [mm] \frac{\phi(\frac{mn}{2})}{\phi(mn)} [/mm] gelange ...

2) Andererseits habe ich einen Beweis für die Multiplikativität [mm] \phi(mn) [/mm] = [mm] \phi(m) \phi(n) [/mm] für ggT(m, n) = 1. Hier werden im Grunde drei Mengen [mm] U_{m}, U_{n} [/mm] und [mm] U_{mn} [/mm] mit [mm] U_{x} [/mm] = [mm] \{ a \in \IZ_{x} \vert ggT(a, x) = 1 \} [/mm] verwendet und dann zwei Funktionen [mm] U_{mn} \to U_m \times U_n [/mm] und [mm] U_m \times U_n \to U_{mn} [/mm] definiert und gezeigt, dass beide surjektiv sind, wobei verrwendet wird, dass es mit dem chinesischen Restsatz ein eindeutig bestimmtes [mm] x_0 \in \IZ_{mn} [/mm] so gibt, dass [mm] x_0 [/mm] mod m = a [mm] \in \IZ_{m} [/mm] und [mm] x_0 [/mm] mod n = b [mm] \in \IZ_{n}. [/mm] Auch hier stocke ich leider und würde mich über einen Tipp freuen...

Gruß und Danke,

Martin

        
Bezug
Eulersche Funktion mit ggT = 2: Antwort
Status: (Antwort) fertig Status 
Datum: 06:33 So 08.11.2020
Autor: statler

Guten Morgen!

> Seien m, n [mm]\in \IN,[/mm] und sei ggT(m, n) = 2. Beweisen Sie,
> dass [mm]\phi(mn)[/mm] = 2 [mm]\phi(m) \phi(n).[/mm]
>  Hallo,
>  grübel leider schon wieder mehrere Stunden hierüber.
>  
> Verfolge bisher 2 Ansätze:
>  
> 1) Aus ggT(m, n) = 2 folgt einerseits, dass sowohl die
> Primfaktorzerlegung von m als auch die von n eine
> Zweierpotenz [mm]\ge[/mm] 1 enthält, wobei entweder die von m oder
> die von n genau 1 ist. Sei die Zerlegung von n diejenige,
> die genau [mm]2^1[/mm] enthält. Dann gilt [mm]\phi(\frac{mn}{2})[/mm] =
> [mm]\phi(m) \phi(\frac{n}{2}).[/mm] Hier komme ich nicht weiter,

>
Unter diesen Voraussetzungen ist [mm] $\varphi(\frac{n}{2}) [/mm] = [mm] \varphi(n)$. [/mm] Am einfachsten ist es wohl, du schreibst dir die Primfaktorzerlegungen von m und n hin und benutzt dann die Produktdarstellung von [mm] $\varphi$: [/mm]
$m = [mm] 2^{e_0}\cdot p_1^{e_1} \cdots p_r^{e_r}$ [/mm] und $n = [mm] 2^{1}\cdot q_1^{f_1} \cdots q_s^{f_s}$ [/mm]

Jetzt ist [mm] $\varphi(m) [/mm] = [mm] 2^{e_0 - 1}\cdot p_1^{e_1}(1-\frac{1}{p_1}) \cdots p_r^{e_r}(1-\frac{1}{p_r})$ [/mm] und [mm] $\varphi(n) [/mm] = [mm] 2^{0}\cdot q_1^{f_1}(1-\frac{1}{q_1}) \cdots q_s^{f_s}(1-\frac{1}{q_s})$ [/mm]

Was ist jetzt [mm] \varphi(mn)? \rightarrow [/mm] Das ist deine Aufgabe :)
So weit so gut und schönen Sonntag
Dieter



Bezug
                
Bezug
Eulersche Funktion mit ggT = 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:10 So 08.11.2020
Autor: sancho1980

Super danke. Dabei fällt mir auf: Auf diese Weise hätte man [mm] \phi(mn) [/mm] = [mm] \phi(m) \phi(n) [/mm] im Fall dass ggT(m, n) = 1 auch viel einfacher zeigen können als über diese Mengen [mm] U_m, U_n [/mm] und [mm] U_{mn} [/mm] ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]