www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Euler Lagrange lösen
Euler Lagrange lösen < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Euler Lagrange lösen: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 17:03 Fr 13.12.2013
Autor: Teekocher

Hallo liebes Forum,

ich hätte eine kurze Frage zur Bearbeitung der Variationsprobleme, die man mittels Aufstellen der Euler-Lagrange-Gleichungen löst. Angenommen es liegt ein Problem folgender Form vor:

gesucht sind Funktionen f und g, die folgendes Funktional minimieren:

[mm] J(f,g)=\integral_{a}^{b}{F(x,f(x),f'(x),g(x),g'(x))dx}. [/mm]

Häufig betrachten man dieses Minimierungsproblem unter Nebenbedingungen.

Meine Frage wäre: wie könnte ich dieses Problem lösen, wenn für g vorausgesetzt wird, dass g eine konstante ist? Und wie könnte ich dann diese Voraussetzung in Form einer gültigen Nebenbedingung darstellen?

Vielleicht kennt jemand einen passenden Satz, bei dem man für eine der funktionen zugelassen darf, dass sie eine Konstante ist. Ich bin vergeblich auf der Suche.

Vielen Dank im voraus,

Teekocher.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Euler Lagrange lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:44 So 22.12.2013
Autor: Al-Chwarizmi


> Hallo liebes Forum,
>  
> ich hätte eine kurze Frage zur Bearbeitung der
> Variationsprobleme, die man mittels Aufstellen der
> Euler-Lagrange-Gleichungen löst. Angenommen es liegt ein
> Problem folgender Form vor:
>  
> gesucht sind Funktionen f und g, die folgendes Funktional
> minimieren:
>  
> [mm]J(f,g)=\integral_{a}^{b}{F(x,f(x),f'(x),g(x),g'(x))dx}.[/mm]
>  
> Häufig betrachten man dieses Minimierungsproblem unter
> Nebenbedingungen.
>  
> Meine Frage wäre: wie könnte ich dieses Problem lösen,
> wenn für g vorausgesetzt wird, dass g eine konstante ist?
> Und wie könnte ich dann diese Voraussetzung in Form einer
> gültigen Nebenbedingung darstellen?
>  
> Vielleicht kennt jemand einen passenden Satz, bei dem man
> für eine der funktionen zugelassen darf, dass sie eine
> Konstante ist.


Hallo Teekocher,

ich kann mir eigentlich nur vorstellen, dass die Aufgabe
gegenüber dem allgemeineren Fall mit zwei gesuchten
Funktionen f und g einfacher wird, wenn vorausgesetzt
werden darf, dass g konstant ist. Die anfängliche
Funktion F reduziert sich doch dabei zu einer einfacheren,
nämlich

      [mm] $\overline{F}(x,f(x),f'(x),g)\ [/mm] :=\ F(x,f(x),f'(x),g,0)$

Für konkretere Ratschläge solltest du wohl auch die Frage
konkretisieren.

LG ,   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]