www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Euler-Differentialgleichungen
Euler-Differentialgleichungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Euler-Differentialgleichungen: Lösung
Status: (Frage) überfällig Status 
Datum: 18:24 Di 11.06.2019
Autor: Ataaga

Aufgabe
Wie lautet u''''(s) bei der Substitution u(s) = x(t) = x(es) zur Lösung der Euler-Differentialgleichungen?

a) u'''' = t4x'''' + 4 t³x''' + t²x'' + 2 tx'


b) u'''' = t4x'''' + 8 t³x''' + 4 t²x'' + tx'


c) u'''' = t4x'''' + 5 t³x''' + 3 t²x'' + tx'


d) u'''' = t4x'''' + 6 t³x''' + 7 t²x'' + tx'

Liebe Grüße


        
Bezug
Euler-Differentialgleichungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Mi 12.06.2019
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Euler-Differentialgleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:43 Do 13.06.2019
Autor: fred97


> Wie lautet u''''(s) bei der Substitution u(s) = x(t) =
> x(es) zur Lösung der Euler-Differentialgleichungen?


Und wie lautet Deine Frage ? Mit es ist wohl [mm] e^s [/mm] gemeint und mit t4 wohl [mm] t^4. [/mm]

Wo ist Deine Eigeninitiative ?


>  
> a) u'''' = t4x'''' + 4 t³x''' + t²x'' + 2 tx'
>  
>
> b) u'''' = t4x'''' + 8 t³x''' + 4 t²x'' + tx'
>  
>
> c) u'''' = t4x'''' + 5 t³x''' + 3 t²x'' + tx'
>  
>
> d) u'''' = t4x'''' + 6 t³x''' + 7 t²x'' + tx'
>  Liebe Grüße
>  


Mit [mm] t=e^s [/mm] und [mm] u(t)=x(e^s) [/mm]  ist [mm] u'(s)=x'(e^s)e^s=tx'(t). [/mm]

Dann $u''(s)= [mm] x''(e^s)(e^s)^2+x'(e^s)e^s=t^2x''(t)+tx'(t)$ [/mm]

Kommst Du nun klar ?

Bezug
                
Bezug
Euler-Differentialgleichungen: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:07 Fr 14.06.2019
Autor: Ataaga

hallo,
danke sehr, dann ist d richtig
beste Grüße

Bezug
                        
Bezug
Euler-Differentialgleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:51 Sa 15.06.2019
Autor: fred97


> hallo,
>  danke sehr, dann ist d richtig

Wie  kommst  du darauf?  Entweder hast  du  die Frage  nicht richtig  verstanden  oder  meine  Antwort  oder beide.



>  beste Grüße


Bezug
                                
Bezug
Euler-Differentialgleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:36 Mo 17.06.2019
Autor: Ataaga

Hallo,

u ''''(s)=s *(s-1)(s-2)(s-3) *x^(s-4)

Bezug
                                        
Bezug
Euler-Differentialgleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:53 Di 18.06.2019
Autor: Chris84


> Hallo,
>  
> u ''''(s)=s *(s-1)(s-2)(s-3) *x^(s-4)

Was genau moechtest du uns hiermit mitteilen?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]