www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Euklidischer Hauptsatz
Euklidischer Hauptsatz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Euklidischer Hauptsatz: Korrektur/Frage
Status: (Frage) beantwortet Status 
Datum: 16:42 Mo 04.09.2006
Autor: MasterMG

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe hier einen Beweis zum Euklidischen Hauptsatz, das meine ich zumindest, bin mir aber nicht sicher, ob es wirklich so ist und der Schluss diesen Beweises ist mir auch nicht einleuchtend. Bitte also jemanden um die Bestätigung meiner Vermutung, dass dies der Beweis des Euklidischen Hauptsatzes ist und um die Klährung der letzten zwei Zeilen. Danke.

Satz: Sei p eine Primzahl,dann gilt: [mm] \forall [/mm] a,b [mm] \in \IZ [/mm] : p teilt a [mm] \* [/mm] b [mm] \Rightarrow [/mm] p teilt a [mm] \vee [/mm] p teilt b.
Bew.: Sei p eine Primzahl, seien a,b [mm] \in \IZ [/mm] gegeben und sei p teilt a [mm] \* [/mm] b.
1.Fall:p teilt a [mm] \Rightarrow [/mm] der Fall ist offensichtlich klar.
2.Fall:p teilt nicht a [mm] \Rightarrow [/mm] ggT(p,a)=1.
Man findet x,y [mm] \in \IZ [/mm] mit 1=ax+by, also ist b=xpb+yab.
p teilt a [mm] \* [/mm] b, also p teilt b

        
Bezug
Euklidischer Hauptsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 Mo 04.09.2006
Autor: EvenSteven


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Ich habe hier einen Beweis zum Euklidischen Hauptsatz, das
> meine ich zumindest, bin mir aber nicht sicher, ob es
> wirklich so ist und der Schluss diesen Beweises ist mir
> auch nicht einleuchtend. Bitte also jemanden um die
> Bestätigung meiner Vermutung, dass dies der Beweis des
> Euklidischen Hauptsatzes ist und um die Klährung der
> letzten zwei Zeilen. Danke.
>  
> Satz: Sei p eine Primzahl,dann gilt: [mm]\forall[/mm] a,b [mm]\in \IZ[/mm] :
> p teilt a [mm]\*[/mm] b [mm]\Rightarrow[/mm] p teilt a [mm]\vee[/mm] p teilt b.
>  Bew.: Sei p eine Primzahl, seien a,b [mm]\in \IZ[/mm] gegeben und
> sei p teilt a [mm]\*[/mm] b.
>  1.Fall:p teilt a [mm]\Rightarrow[/mm] der Fall ist offensichtlich
> klar.

Ich kenne den Beweis des Satzes zwar nicht, aber benutzt du bei dieser Fallunterscheidung nicht schon, dass a durch p teilbar ist? Ich meine, du musst ja beweisen, dass a durch p teilbar ist.

>  2.Fall:p teilt nicht a [mm]\Rightarrow[/mm] ggT(p,a)=1.
>  Man findet x,y [mm]\in \IZ[/mm] mit 1=ax+by, also ist b=xpb+yab.
>  p teilt a [mm]\*[/mm] b, also p teilt b

Gruss

EvenSteven

Bezug
                
Bezug
Euklidischer Hauptsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Mo 04.09.2006
Autor: MasterMG

richtig, deshalb meine ich ja auch, dass der 1. Fall offensichtlich klar ist, weil die Annahme mit meinem Ziel, nämlch zu beweisen, dass a durch p teilbar ist, bereits übereinstimmt. Somit wird der 2. Fall erst interessant. Der 1. Fall ist reine Formsache.

Bezug
        
Bezug
Euklidischer Hauptsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Mo 04.09.2006
Autor: felixf

Hallo!

>  Ich habe hier einen Beweis zum Euklidischen Hauptsatz, das
> meine ich zumindest, bin mir aber nicht sicher, ob es
> wirklich so ist und der Schluss diesen Beweises ist mir
> auch nicht einleuchtend. Bitte also jemanden um die
> Bestätigung meiner Vermutung, dass dies der Beweis des
> Euklidischen Hauptsatzes ist und um die Klährung der
> letzten zwei Zeilen. Danke.
>  
> Satz: Sei p eine Primzahl,dann gilt: [mm]\forall[/mm] a,b [mm]\in \IZ[/mm] :
> p teilt a [mm]\*[/mm] b [mm]\Rightarrow[/mm] p teilt a [mm]\vee[/mm] p teilt b.

Wenn dass der `Euklidische Hauptsatz' ist: Ja, dann ist das folgende ein Beweis davon.

>  Bew.: Sei p eine Primzahl, seien a,b [mm]\in \IZ[/mm] gegeben und
> sei p teilt a [mm]\*[/mm] b.
>  1.Fall:p teilt a [mm]\Rightarrow[/mm] der Fall ist offensichtlich
> klar.
>  2.Fall:p teilt nicht a [mm]\Rightarrow[/mm] ggT(p,a)=1.

So, nun zu den kritischen Zeilen:

>  Man findet x,y [mm]\in \IZ[/mm] mit 1=ax+by, also ist b=xpb+yab.

Du meinst, man findet $x, y [mm] \in \IZ$ [/mm] mit $1 = p x + a y$. Ansonsten kommst du nicht auf die hintere Gleichung. Dass es solche $x, y [mm] \in \IZ$ [/mm] gibt liefert der Euklidische Algorithmus zur ggT-Bestimmung.

>  p teilt a [mm]\*[/mm] b, also p teilt b

Wenn $b = x p b + y a b$ ist, dann ist $p$ ein Teiler von $x p b$ und ein Teiler von $y a b$, und somit auch von deren Summe, die gleich $b$ ist.

LG Felix


Bezug
                
Bezug
Euklidischer Hauptsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 Mo 04.09.2006
Autor: MasterMG

Ok, vielen Dank schon mal dafür. Eine kleine Frage hab ich dann aber noch, nämlich:
Wenn b=xbp+aby ist, dann ist p ein Teiler von xpb und ein Teiler von yab.
Dass p ein Teiler von xpb ist, ist klar, denn xpb enthält p als Faktor. Wie ist es aber bei yab zu erkennen? Geht diese Tatsache auf den Euklidischen Algorithmus zur ggT-Bestimmung zurück oder ist es aus diesem Beweis irgendwie zu entnehmen?


Bezug
                        
Bezug
Euklidischer Hauptsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Mo 04.09.2006
Autor: felixf

Hallo!

> Dass p ein Teiler von xpb ist, ist klar, denn xpb enthält p
> als Faktor. Wie ist es aber bei yab zu erkennen? Geht diese

$p$ ist ein Teiler von $a b$ (nach Voraussetzung!), und damit auch ein Teiler von $y a b$.

LG Felix


Bezug
                                
Bezug
Euklidischer Hauptsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:07 Mo 04.09.2006
Autor: MasterMG

Ja, stimmt, alles klar.
Vielen Dank nochmal.
MFG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]