www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Erzeugendensystem
Erzeugendensystem < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugendensystem: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 23:18 Mi 25.02.2009
Autor: can19

Hallo,
ich habe eine frage bzgl. erzeugendensystem.
und zwar ein erzeugendensystem muss nicht immer eine basis sein.
ein erzeugendsystem ist eine menge aus vektoren der ebene, wenn man jeden vektor der ebene durch eine linearkombination der vektoren darstellen kann. sind damit die einheitsvektoren gemeint...? erst wenn ich die einheitsvektoren durch die vektoren darstellen kann, dann kann ich erst vom erzeugendensystem reden?

zum beispiel hab ich drei vektoren die linear unabhängig sind [mm] \vektor{2\\4\\6} \vektor{3\\7\\5} \vektor{7\\11\\0} [/mm]
da diese vektoren linear unabhängig sind bilden sie eine Basis.
Aber kein erzeugendensystem, da sie sich nicht als einheitsvektoren darstellen lassen.

bitte um hilfe...!!
danke im voraus!!
lg

        
Bezug
Erzeugendensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 01:46 Do 26.02.2009
Autor: Blech

Hi,

eine Basis ist ein Erzeugendensystem, dessen Vektoren linear unabhängig sind.

[mm] $\vektor{1\\0\\0}, \vektor{0\\1\\0}, \vektor{0\\0\\1}, \vektor{0\\1\\1}$ [/mm]
ist ein Erzeugendensystem des [mm] $\IR^3$, [/mm] aber keine Basis, weil die Vektoren nicht linear unabhängig sind.

[mm] $\vektor{1\\0\\0}, \vektor{1\\1\\0}, \vektor{1\\1\\1}$ [/mm]
ist Erzeugendensystem und Basis.

> Hallo,
>  ich habe eine frage bzgl. erzeugendensystem.
>  und zwar ein erzeugendensystem muss nicht immer eine basis
> sein.

Ja.

> ein erzeugendsystem ist eine menge aus vektoren der ebene,
> wenn man jeden vektor der ebene durch eine

Muß keine Ebene sein.

> linearkombination der vektoren darstellen kann. sind damit
> die einheitsvektoren gemeint...? erst wenn ich die

Die Einheitsvektoren müssen nicht unbedingt Teil des Unterraums sein, den wir betrachten.

Nehmen wir den von [mm] $\vektor{1\\1\\0}$ [/mm] erzeugten Unterraum des [mm] $\IR^3$. [/mm] (d.h. eine Gerade, die die x-y-Ebene diagonal halbiert).

[mm] $\vektor{1\\1\\0}$ [/mm] erzeugt wie schon gesagt den Unterraum und ist damit Erzeugendensystem. Es ist auch eine Basis, weil alle Vektoren des Erzeugendensystems (d.h. der eine) linear unabhängig sind.


[mm] $\vektor{1\\1\\0}, \vektor{-1\\-1\\0}$ [/mm] erzeugt die gleiche Gerade, aber die Vektoren sind nicht unabhängig.

Du kannst aus einem Erzeugendensystem eine Basis gewinnen, indem Du so lange linear abhängige Vektoren rausschmeißt bis ein linear unabhängiges Erzeugendensystem übrig bleibt (im allerersten Beispiel oben kann ich den ersten Vektor nicht entfernen, weil er linear unabhängig zu allen anderen ist, von den drei restlichen kann ich allerdings auf einen verzichten)


> zum beispiel hab ich drei vektoren die linear unabhängig
> sind [mm]\vektor{2\\4\\6} \vektor{3\\7\\5} \vektor{7\\11\\0}[/mm]
>  
> da diese vektoren linear unabhängig sind bilden sie eine
> Basis.

Sind Basis und Erzeugendensystem

>  Aber kein erzeugendensystem, da sie sich nicht als
> einheitsvektoren darstellen lassen.

? Du kannst die Einheitsvektoren durch die drei darstellen.


ciao
Stefan

Bezug
                
Bezug
Erzeugendensystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:53 Do 26.02.2009
Autor: can19

ahhh vielen dank stefan!!! ;)
lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]