www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Erweiterte Ableitungsregeln
Erweiterte Ableitungsregeln < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erweiterte Ableitungsregeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Do 16.05.2013
Autor: DragoNru

Aufgabe
Zeigen sie jeweils für alle n [mm] \in \IN [/mm]

a) [mm] (\wurzel{x})^{(n)} [/mm] = [mm] (-1)^{n+1} [/mm] * [mm] \bruch{1*3***(2n-3)}{2^n*x^{n-1}*\wurzel{x}} [/mm]

b) [mm] (sin^2 x)^{(2n)} [/mm] = [mm] (-1)^{n+1}*2^{2n-1}*cos2x [/mm]

Moin,

bin grad bei der a) und komme da nicht weiter. Versuche den Beweis mit hilfe der Vollständigen Induktion zuerbringen. Ist das überhaupt der richtige Ansatz?

Mein Anfang sieht so aus:

IA

n=1

[mm] \bruch{1}{2*\wurzel{x}} [/mm] = [mm] \bruch{1*3***(2-3)}{2*\wurzel{x}} [/mm]

Nur der rechte Zähler will nicht zur 1 werden :(
Kann mir bitte jemand helfen?

Gruß

        
Bezug
Erweiterte Ableitungsregeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Do 16.05.2013
Autor: Gonozal_IX

Hiho,

die Schreibweise rechts stimmt so nur für n>2.

Gemeint war: [mm] $\produkt_{k=1}^n [/mm] (2k - 3)$

MFG,
Gono.

Bezug
                
Bezug
Erweiterte Ableitungsregeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Do 16.05.2013
Autor: DragoNru

achso, ja dann kann das gar nicht klappen, so wie ich mir das vorgestellt habe. Wobei, wenn das erst bei n>2 los geht, versteh ich nicht ganz, was mit 1 [mm] \le [/mm] n [mm] \le [/mm] 2 ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]