www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert von X^2
Erwartungswert von X^2 < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert von X^2: Erklärung
Status: (Frage) beantwortet Status 
Datum: 11:37 Sa 15.05.2010
Autor: kegel53

Aufgabe
Sei X eine diskrete, poissonverteilte Zufallsvariable mit Parameter [mm] \lambda. [/mm]
Dann gilt: [mm] E[X]=\sum_{k\in{X[\Omega]}} k\cdot{P[X=k]}=\sum_{k\in{\IN_0}} k\cdot{e^{-\lambda}\cdot{\bruch{\lambda^k}{k!}}}=\lambda [/mm]

Warum ist dann [mm] E[X^2]=\sum_{k\in{X^2[\Omega]}} k\cdot{P[X^2=k]}=\sum_{k\in{\IN_0}} k^2\cdot{e^{-\lambda}\cdot{\bruch{\lambda^k}{k!}}}=\lambda^2+\lambda [/mm]

Hallo Leute,
also mir leuchtet das zweite Gleichheitszeichen nicht so ganz ein, genauer gesagt weiß ich nicht wie ich darauf komme, dass [mm] P[X^2=k]=P[X=k]=e^{-\lambda}\cdot{\bruch{\lambda^k}{k!}} [/mm] und warum ich k durch [mm] k^2 [/mm] ersetzen darf.
Wär echt klasse, wenn mir das jemand erklären könnte.
Vielen Dank schon mal!!

        
Bezug
Erwartungswert von X^2: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Sa 15.05.2010
Autor: steppenhahn

Hallo!

> Sei X eine diskrete, poissonverteilte Zufallsvariable mit
> Parameter [mm]\lambda.[/mm]
>  Dann gilt: [mm]E[X]=\sum_{k\in{X[\Omega]}} k\cdot{P[X=k]}=\sum_{k\in{\IN_0}} k\cdot{e^{-\lambda}\cdot{\bruch{\lambda^k}{k!}}}=\lambda[/mm]
>  
> Warum ist dann [mm]E[X^2]=\sum_{k\in{X^2[\Omega]}} k\cdot{P[X^2=k]}=\sum_{k\in{\IN_0}} k^2\cdot{e^{-\lambda}\cdot{\bruch{\lambda^k}{k!}}}=\lambda^2+\lambda[/mm]
>  
> Hallo Leute,
>  also mir leuchtet das zweite Gleichheitszeichen nicht so
> ganz ein, genauer gesagt weiß ich nicht wie ich darauf
> komme, dass
> [mm]P[X^2=k]=P[X=k]=e^{-\lambda}\cdot{\bruch{\lambda^k}{k!}}[/mm]

Eigentlich ist das ein Zwischenschritt, den man nie aufschreibt, weil man die Transformationsformel für Erwartungswerte benutzt:

$E(g(X)) = [mm] \sum_{k\in X[\Omega]}g(k)*P[X [/mm] = k]$

Folgendes ist aber die Überlegung:

[mm] $\sum_{k\in{X^2[\Omega]}} k\cdot{P[X^2=k]}$ [/mm]

k ist ja grundsätzlich wieder in [mm] \IN_{0}. [/mm] (Wenn X nur ganzzahlige Werte größergleich Null annehmen konnte, dann nimmt auch [mm] X^{2} [/mm] nur ganzzahlige Werte größergleich Null an).

Tritt nun [mm] $X^{2} [/mm] = k ein$, dann ist dies äquivalent zu $X = [mm] \sqrt{k}$. [/mm] (Da beide Seiten positiv). Es ist also:

[mm] $P[X^{2} [/mm] = k] = P[X = [mm] \sqrt{k}]$ [/mm]

Nun wissen wir aber: X nimmt nur ganzzahlige Werte größergleich Null an. Deswegen ist die Wahrscheinlichkeit nur nicht Null, wenn $k = [mm] m^{2}$ [/mm] mit [mm] m\in\IN_{0}, [/mm] also k eine Quadratzahl ist.

Damit schrumpelt unsere Summe oben zusammen:

[mm] $\sum_{k\in{X^2[\Omega]}} k\cdot{P[X^2=k]} [/mm] = [mm] \sum_{k = m^{2}\in X^{2}[\Omega]}k\cdot{P[X^2=k]} [/mm] =  [mm] \sum_{m^{2}\in X^{2}[\Omega]}m^{2}*P[X^{2}=m^{2}] [/mm] = [mm] \sum_{m\in X[\Omega]}m^{2}*P[X=m]$ [/mm]

----------

Ein Tipp für die Berechnung der Summe: Schreibe [mm] $k^{2} [/mm] = k*(k-1) + k$, und berechne die beiden entstehenden Summen separat mit Indexverschiebung.

Grüße,
Stefan

Bezug
                
Bezug
Erwartungswert von X^2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Sa 15.05.2010
Autor: kegel53

Okay, alles klar. Dann hätt ich das also auch verstanden :). Vielen Dank!!
Die anschließende Berechnung hab ich bereits hingekriegt, aber auch hier nochmals herzlichen Dank für den Tipp!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]