Erwartungswert symm. vert. ZV < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:35 Mi 30.06.2010 | Autor: | jboss |
Aufgabe | Beweisen Sie für den stetigen Fall die Aussage: Ist $X$ eine um $m [mm] \in \IR$ [/mm] symmetrisch verteilte Zufallsvariable und existiert der Erwartungswert, so ist $E(X) = m$. |
Hallo,
mein Ansatz ist der folgende:
$E(X) = [mm] \integral_{-\infty}^{\infty}{x \cdot f(x) dx} [/mm] = [mm] \integral_{-\infty}^{\infty}{(x - m + m) \cdot f(x) dx} [/mm] = [mm] \integral_{-\infty}^{\infty}{(x - m) \cdot f(x) dx} [/mm] + m [mm] \cdot \underbrace{\integral_{-\infty}^{\infty}{f(x) dx}}_{=1} [/mm] = [mm] \integral_{-\infty}^{\infty}{(x - m) \cdot f(x) dx} [/mm] + m$
An dieser Stelle komme ich nicht weiter. Wenn meine Idee richtig ist müsste das Integral [mm] $\integral_{-\infty}^{\infty}{(x - m) \cdot f(x) dx}$ [/mm] gleich 0 sein. Allerdings tue ich mir schwer das zu begründen bzw. zu beweisen.
Würde mich freuen wenn mir jemand unter die Arme greifen würde.
Gruss
jboss
|
|
|
|
Huhu,
auch wenn deine Idee einen fundamentalen Fehler hat, machen wir dem Verständnis wegen da mal weiter und dann sag ich die, was deine Idee für einen Haken hat.
> An dieser Stelle komme ich nicht weiter. Wenn meine Idee
> richtig ist müsste das Integral
> [mm]\integral_{-\infty}^{\infty}{(x - m) \cdot f(x) dx}[/mm] gleich
> 0 sein. Allerdings tue ich mir schwer das zu begründen
> bzw. zu beweisen.
Ist auch so. Zerlege das Integral mal in die Grenzen [mm] $-\infty$ [/mm] bis 0 und 0 bis [mm] \infty.
[/mm]
Verwende dann, dass X Symmetrisch verteilt ist (was heißt das das für die Teilintegrale?).
Nun zu deinem Fehler: Wer sagt dir, dass X überhaupt eine Dichte besitzt und du den Erwartungswert so berechnen kannst?
MFG,
Gono.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:38 Mi 30.06.2010 | Autor: | jboss |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hiho,
> Nun zu deinem Fehler: Wer sagt dir, dass X überhaupt eine
> Dichte besitzt und du den Erwartungswert so berechnen
> kannst?
Ich war gerade ziemlich confused als ich das gelesen habe. Ein Blick in der Wikipedia-Artikel hat dann Klarheit gebracht
Also wir haben in Statistik definiert, dass eine Zufallsvariable $X$ stetig verteilt ist, wenn eine Funktion $f_X: \IR \rightarrow \IR$ mit $f(x) \ge 0$ existiert, so dass
$F_X(x) = \integral_{-\infty}^{x}{f_x(x) dx$
für alle $x$ gilt. $f_x$ nennen wir dann Dichte.
Bisher haben wir auch nur die Formel $E(X) = \integral_{}^{} x\cdotf(x)dx$ für den Erwartungswert kennengelernt und Beweise immer damit geführt.
> Ist auch so. Zerlege das Integral mal in die Grenzen $-\infty$ bis 0 und 0 bis \infty.
> Verwende dann, dass X Symmetrisch verteilt ist (was heißt das das für die Teilintegrale?).
X ist ja symmetrisch um $m \in \IR$. Also müsste ich das doch dann bei $m$ zerlegen und nicht bei 0, oder?
$\integral_{-\infty}^{\infty}{(x-m)\cdot f(x)dx}
= \integral_{-\infty}^{m}{(x-m)\cdot f(x)dx} + $\integral_{m}^{\infty}{(x-m)\cdot f(x)dx}$
Wie nutze ich denn jetzt die Symmetrie aus? Das ist mir immer noch nicht klar. Die beiden Integrale sind aufgrund der Symmetrie gleich groß, aber das Plus dazwischen passt ja dann noch nicht. Wäre eine Umformung wie die folgende legitim?
$\integral_{-\infty}^{m}{(x-m)\cdot f(x)dx} + $\integral_{m}^{\infty}{(x-m)\cdot f(x)dx}
= \integral_{-\infty}^{m}{(x-m)\cdot f(x)dx} - \integral_{\infty}^{m}{(x-m)\cdot f(x)dx}
= 0$
Gruss Jakob
|
|
|
|
|
> Hiho,
>
Hallo,
> > Nun zu deinem Fehler: Wer sagt dir, dass X überhaupt eine
> > Dichte besitzt und du den Erwartungswert so berechnen
> > kannst?
>
> Ich war gerade ziemlich confused als ich das gelesen habe.
> Ein Blick in der Wikipedia-Artikel hat dann Klarheit
> gebracht
>
> Also wir haben in Statistik definiert, dass eine
> Zufallsvariable [mm]X[/mm] stetig verteilt ist, wenn eine Funktion
> [mm]f_X: \IR \rightarrow \IR[/mm] mit [mm]f(x) \ge 0[/mm] existiert, so dass
> [mm]F_X(x) = \integral_{-\infty}^{x}{f_x(x) dx[/mm]
> für alle [mm]x[/mm]
> gilt. [mm]f_x[/mm] nennen wir dann Dichte.
>
> Bisher haben wir auch nur die Formel [mm]E(X) = \integral_{}^{} x\cdotf(x)dx[/mm]
> für den Erwartungswert kennengelernt und Beweise immer
> damit geführt.
>
>
> > Ist auch so. Zerlege das Integral mal in die Grenzen
> [mm]-\infty[/mm] bis 0 und 0 bis [mm]\infty.[/mm]
> > Verwende dann, dass X Symmetrisch verteilt ist (was heißt
> das das für die Teilintegrale?).
>
> X ist ja symmetrisch um [mm]m \in \IR[/mm]. Also müsste ich das
> doch dann bei [mm]m[/mm] zerlegen und nicht bei 0, oder?
> [mm]$\integral_{-\infty}^{\infty}{(x-m)\cdot f(x)dx}[/mm]
> = [mm]\integral_{-\infty}^{m}{(x-m)\cdot f(x)dx}[/mm] +
> [mm]\integral_{m}^{\infty}{(x-m)\cdot f(x)dx}[/mm]
>
> Wie nutze ich denn jetzt die Symmetrie aus? Das ist mir
> immer noch nicht klar. Die beiden Integrale sind aufgrund
> der Symmetrie gleich groß, aber das Plus dazwischen passt
> ja dann noch nicht. Wäre eine Umformung wie die folgende
> legitim?
> [mm]\integral_{-\infty}^{m}{(x-m)\cdot f(x)dx} +[/mm][mm] \integral_{m}^{\infty}{(x-m)\cdot f(x)dx}[/mm]
>
> = [mm]\integral_{-\infty}^{m}{(x-m)\cdot f(x)dx}[/mm] -
> [mm]\integral_{\infty}^{m}{(x-m)\cdot f(x)dx}[/mm]
> = 0
>
So wird das nix...
[mm] $\integral_{-\infty}^{\infty}{(x-m)f(x) dx}\overbrace{=}^{\mbox{Du solltest bei 0 aufteilen, nicht bei m, das war kein Schreibfehler!!!}}\integral_{-\infty}^{0}{(x-m)f(x) dx}+\integral_{0}^{\infty}{(x-m)f(x) dx}$
[/mm]
Führ jetzt eine Koordinatentransformation aus $y=x-m$. Dann kannst du dein Symmetrieargument prima anwenden, Integrale "umdrehen" und fertig!
> Gruss Jakob
>
lg Kai
|
|
|
|