www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Erwartungswert Münzwurf
Erwartungswert Münzwurf < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert Münzwurf: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:21 Do 25.09.2008
Autor: Ines13

Aufgabe
A und B vereinbaren, eine Münze so lange zu werfen, bis Wappen erscheint, max jedoch 5mal. A zahlt an B für jeden notwendigen Wurf 1 euro. ist nach dem 5. wurf noch kein wappen gefallen, muss A an B den betrag von 7 euro bezahlen.

a) Zeichne ein Baumdiagramm und bestimmedie Verteilung der Zufallsgröße X:Betrag (in Euro), den A an B zahlen muss und deren erwartungswert
b) Wie groß muss der Einsatz von B sein, damit die Spielregel fair ist?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich habe mir überlegt, dass die wahrscheinlichtkeit, dass wappen geworfen wird, o.5 beträgt. die wahrscheinlichkeit das zahl geworfen wird beträgt ebenfalls 0.5. die formel, um den erwartungswert auszurechnen, ist wie folgt: E(x)= a1xP(a1)+a2xP(a2)+...+anxP(an)
da für jeden notwendigen wurf 1 euro gezahlt werden muss, könnte man vllt schreiben: E(x)= 1x0,5+1x0.5+1x0.5+1x0.5+1x05
aber irgendwie klingt das auch unlogisch. irgendwas ist da falsch. könnt ihr mir vllt einen tipp geben??

        
Bezug
Erwartungswert Münzwurf: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Do 25.09.2008
Autor: Al-Chwarizmi


> A und B vereinbaren, eine Münze so lange zu werfen, bis
> Wappen erscheint, max jedoch 5mal. A zahlt an B für jeden
> notwendigen Wurf 1 euro. ist nach dem 5. wurf noch kein
> wappen gefallen, muss A an B den betrag von 7 euro
> bezahlen.
>  
> a) Zeichne ein Baumdiagramm und bestimmedie Verteilung der
> Zufallsgröße X:Betrag (in Euro), den A an B zahlen muss und
> deren erwartungswert
>  b) Wie groß muss der Einsatz von B sein, damit die
> Spielregel fair ist?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> ich habe mir überlegt, dass die wahrscheinlichtkeit, dass
> wappen geworfen wird, o.5 beträgt. die wahrscheinlichkeit
> das zahl geworfen wird beträgt ebenfalls 0.5. die formel,
> um den erwartungswert auszurechnen, ist wie folgt: E(x)=
> a1xP(a1)+a2xP(a2)+...+anxP(an)
>  da für jeden notwendigen wurf 1 euro gezahlt werden muss,
> könnte man vllt schreiben: E(x)=
> 1x0,5+1x0.5+1x0.5+1x0.5+1x05
>  aber irgendwie klingt das auch unlogisch. irgendwas ist da
> falsch. könnt ihr mir vllt einen tipp geben??


Hast du dir den Baum wirklich gezeichnet und dir jeden
möglichen Spielverlauf im Einzelnen klar gemacht ?
Ein Beispiel: Das Ereignis "Zuerst 3 mal Zahl, dann Wappen"
hat die Wahrscheinlichkeit [mm] \bruch{1}{2}*\bruch{1}{2}*\bruch{1}{2}*\bruch{1}{2}=\bruch{1}{16} [/mm]
und hat eine Zahlung von 4 Euro von A an B zur Folge.
Der entsprechende Beitrag an den Erwartungswert von X
ist  [mm] \bruch{1}{16}*4\ Euro=\bruch{1}{4} [/mm] Euro.


LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]