www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert - Zeilenmaximum
Erwartungswert - Zeilenmaximum < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert - Zeilenmaximum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 Fr 02.08.2013
Autor: k0ol

Hallo zusammen,

seien [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] zwei Zufallszahlen aus der selben Verteilung, sagen wir Standardnormalverteilung, also [mm] $E[x_1]=E[x_2 [/mm] ]=0$. Außerdem sei [mm] $x_3=max\{x_1, x_2\}$. [/mm] Was ist der Erwartungswert von [mm] x_3? [/mm]

Ich habe das Ganze mal mit Stata simuliert. Bei der Standardnormalverteilung ist [mm] $E[x_3]\approx [/mm] 0.56$, wenn ich stattdessen sage [mm] $x_1,x_2\sim [/mm] N(0,2)$ kriege ich [mm] $E[x_3]\approx [/mm] 1.12$. Der Erwartungswert von [mm] $x_3$ [/mm] scheint also linear in der Standardabweichung der angenommenen Verteilung zu sein.

Ich würde diese Ergebnisse gerne theoretisch nachvollziehen, habe aber ehrlich gesagt keine Ahnung wie ich dabei vorgehen muss. Kann mir jemand von Euch bitte helfen?

Danke und Gruß
k0ol

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Erwartungswert - Zeilenmaximum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Fr 02.08.2013
Autor: Leopold_Gast

Es seien [mm]\varphi(t),\Phi(t)[/mm] Dichte und Verteilungsfunktion der Standardnormalverteilung. Vermutlich sollen [mm]X_1,X_2[/mm] unabhängig voneinander sein.

[mm]Y=\max \left\{ X_1,X_2 \right\}[/mm] ist genau dann kleiner oder gleich [mm]t[/mm], wenn beide Größen zugleich kleiner oder gleich [mm]t[/mm] sind. Als Verteilungsfunktion von [mm]Y[/mm] bekommt man damit:

[mm]F(t) = P \left( Y \leq t \right) = P \left( X_1 \leq t \, , \, X_2 \leq t \right) = P \left( X_1 \leq t \right) \cdot P \left( X_2 \leq t \right) = \left( \Phi(t) \right)^2[/mm]

Und die Dichte von [mm]Y[/mm] ist

[mm]f(t) = 2 \, \varphi(t) \, \Phi(t)[/mm]

Für den Erwartungswert von [mm]Y[/mm] gilt somit:

[mm]\mathcal{E}(Y) = \int_{- \infty}^{\infty} 2 t \, \varphi(t) \, \Phi(t) ~ \mathrm{d}t = \int_{- \infty}^{\infty} -2 \varphi'(t) \Phi(t) ~ \mathrm{d}t = \int_{- \infty}^{\infty} 2 \left( \varphi(t) \right)^2 ~ \mathrm{d}t = \frac{1}{\sqrt{\pi}}[/mm]

Bezug
                
Bezug
Erwartungswert - Zeilenmaximum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Fr 02.08.2013
Autor: k0ol

Das ging ja schnell. Super! Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]