www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Erwartungswert
Erwartungswert < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Di 26.03.2013
Autor: melodie

hallo,

ich habe eine standartnormalverteilte Zufallsvariable X mit der Abbildung g: [mm] \IR \to \IR [/mm]
und
g(x)= |x|+4  mit [mm] x\in \IR [/mm]


gesucht ist :

1. [mm] P(g(x)\le [/mm] 4.4)

offizieller Lösungsweg:

[mm] \integral_{g(x)\le 4.4}{f_X(x) dx} [/mm]  =  [mm] \integral_{-0.4}^{0.4}{f_X(x) dx} =2\phi [/mm] (0.4) -1 = 0,3108

ich verstehe nicht, wie man auf die Grenzen 0.4 und -0.4 kommt und wie daraus [mm] 2\phi [/mm] (0.4) - wird.





2. E(g(x)) = [mm] \integral_{\IR}{g(x)f_X(x) dx}= \integral_{\IR}{(|x|+4)(\bruch{1}{\wurzel{2\pi}} ) *e ^{\bruch{-x^2}{2}}dx} [/mm]

= [mm] (\bruch{2}{\wurzel{2\pi}} [/mm] ) [mm] \integral_{0}^{infty}{xe ^{\bruch{-x^2}{2}}dx} [/mm] +4


[mm] (\bruch{1}{\wurzel{2\pi}} )e^{\bruch{-x^2}{2}} [/mm] wird aus einer Tabelle abgelesen, nehme ich an?

warum wurden im letzten Schritt die Grenzen o und unendlich genommen und wie komme ich hier auf den Vorfaktor [mm] (\bruch{2}{\wurzel{2\pi}} [/mm] ) ?

        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Di 26.03.2013
Autor: MathePower

Hallo melodie,

> hallo,
>  
> ich habe eine standartnormalverteilte Zufallsvariable X mit
> der Abbildung g: [mm]\IR \to \IR[/mm]
>  und
>  g(x)= |x|+4  mit [mm]x\in \IR[/mm]
>  
>
> gesucht ist :
>  
> 1. [mm]P(g(x)\le[/mm] 4.4)
>  
> offizieller Lösungsweg:
>
> [mm]\integral_{g(x)\le 4.4}{f_X(x) dx}[/mm]  =  
> [mm]\integral_{-0.4}^{0.4}{f_X(x) dx} =2\phi[/mm] (0.4) -1 = 0,3108
>  
> ich verstehe nicht, wie man auf die Grenzen 0.4 und -0.4
> kommt und wie daraus [mm]2\phi[/mm] (0.4) - wird.
>  


Aus [mm]g\left(x\right)=\vmat{x}+4 \le 4.4[/mm] folgt [mm]\vmat{x} \le 0.4[/mm]
und daraus folgt für [mm]x < 0: x \ge -0.4[/mm] und  für [mm]x \ge 0: x \le 0.4[/mm]

Die Auswertung des Integrals ergibt: [mm]\phi\left(0.4\right)-\phi\left(-0.4\right)[/mm]

Aus Symmetriegründen folgt [mm]\phi\left(-0.4\right)=1-\phi\left(0.4\right)[/mm]

Daraus ergibt sich dann: [mm]2\phi(0.4) -1[/mm]


>
>
>
>
> 2. E(g(x)) = [mm]\integral_{\IR}{g(x)f_X(x) dx}= \integral_{\IR}{(|x|+4)(\bruch{1}{\wurzel{2\pi}} ) *e ^{\bruch{-x^2}{2}}dx}[/mm]
>  
> = [mm](\bruch{2}{\wurzel{2\pi}}[/mm] ) [mm]\integral_{0}^{infty}{xe ^{\bruch{-x^2}{2}}dx}[/mm]
> +4
>  
>
> [mm](\bruch{1}{\wurzel{2\pi}} )e^{\bruch{-x^2}{2}}[/mm] wird aus
> einer Tabelle abgelesen, nehme ich an?
>  


Wenn das die Stammfunktion des Integranden ist,
dann kannst Du auf diese via Substitution kommen.


> warum wurden im letzten Schritt die Grenzen o und unendlich
> genommen und wie komme ich hier auf den Vorfaktor
> [mm](\bruch{2}{\wurzel{2\pi}}[/mm] ) ?


Aus der Symmetrie der Funktion g(x).


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]