www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert
Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 12:37 Mo 05.01.2009
Autor: pathethic

Aufgabe
Der diskrete Wahrscheinlichkeitsraum Ω = {1, 2, . . . , 6} × {1, 2, . . . , 6} fur zwei Münzwurfe sind Zufallsvariablen fur die Summe und die Differenz der beide Werte interessant:

X (a, b) = a + b
Y (a, b) = |a − b|

Der Erwartungswert der Zufallsvariablen X ist definiert als E(X) = [mm] \summe_{\omega \in \Omega}^{} X(\omega) Pr(\omega) [/mm]

Im Beispiel kann man Erwartungswerte relativ leicht ausrechen:
1) E (X)  = 7 und E (Y) = [mm] \frac{70}{36} [/mm]

Aus unserem Matheskript.

Ich versteh jedoch nicht wie man auf die 7 kommt. Für jeweils einen Würfel versteh ich die Problematik, oder denke ich zumindestens. [mm] Pr(\omega) [/mm] ist jeweils [mm] \frac{1}{6} [/mm] und für zwei Würfe dann [mm] \frac{1}{36}. [/mm] Nur versteh ich nicht wie das [mm] X(\omega) [/mm] gewählt wurde.

Hat jemand eine Idee?

        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Mo 05.01.2009
Autor: steffenhst

Hallo,

für das erste Beispiel ist X(w) doch ein Element der Menge {2,3,4,5,6,7,8,9,10,11,12}. Und jetzt ganz normal den Erwartungswert bestimmen.

Grüße, Steffen

Bezug
                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 Mo 05.01.2009
Autor: pathethic

Aber das wäre doch dann:

[mm] \frac{1}{36} \cdot [/mm] 2 + [mm] \frac{1}{36} \cdot [/mm] 3 + [mm] \frac{1}{36} \cdot [/mm] 4 + [mm] \frac{1}{36} \cdot [/mm] 5 + [mm] \frac{1}{36} \cdot [/mm] 6 + [mm] \frac{1}{36} \cdot [/mm] 7 + [mm] \frac{1}{36} \cdot [/mm] 8 + [mm] \frac{1}{36} \cdot [/mm] 9 + [mm] \frac{1}{36} \cdot [/mm] 10 + [mm] \frac{1}{36} \cdot [/mm] 11 + [mm] \frac{1}{36} \cdot [/mm] 12  = 2,13..

Bezug
                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Mo 05.01.2009
Autor: steffenhst


> Aber das wäre doch dann:
>  
> [mm]\frac{1}{36} \cdot[/mm] 2 + [mm]\frac{1}{36} \cdot[/mm] 3 + [mm]\frac{1}{36} \cdot[/mm]
> 4 + [mm]\frac{1}{36} \cdot[/mm] 5 + [mm]\frac{1}{36} \cdot[/mm] 6 +
> [mm]\frac{1}{36} \cdot[/mm] 7 + [mm]\frac{1}{36} \cdot[/mm] 8 + [mm]\frac{1}{36} \cdot[/mm]
> 9 + [mm]\frac{1}{36} \cdot[/mm] 10 + [mm]\frac{1}{36} \cdot[/mm] 11 +
> [mm]\frac{1}{36} \cdot[/mm] 12  = 2,13..

Nein, eher so (als Bsp.):

E[X] = 2 * [mm] Pr_{X} [/mm] ({2}) + ...+ 6 * [mm] Pr_{X} [/mm] ({6})+ ... + 12 * [mm] Pr_{X} [/mm] ({12})  = 2 * [mm] Pr(X^{-1} [/mm] (2) + ... + 6 * [mm] Pr(X^{-1} [/mm] (6)) + ... + 12 * [mm] Pr(X^{-1} [/mm] (12)) = 2 * Pr((1,1)) + ... + 6 * Pr((1,5)(5,1),(2,4),(4,2),(3,3)) + 12 * Pr ((6,6))

Dabei meint [mm] Pr(X^{-1}(12)) [/mm] die Wahrscheinlichkeit für die Päarchen (x,y) deren Summe 12 ergibt. Da gibt es nur ein Paar nämlich (6,6), so dass P = 1/36 ist. Im Falle von [mm] Pr(X^{-1}(6)) [/mm] gibt es fünf Päarchen also ist P = 5/36 usw. OK?
  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]