www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Erwartungswert
Erwartungswert < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:39 Mi 19.11.2008
Autor: Zorba

Aufgabe
Sind X und Y quadratintegrierbare Zufallsvariablen mit E[X|Y]=Y und E[Y|X]=X, dann ist X=Y fast sicher.

Kann mir jemand einen Tipp geben, ich weiß nicht wie ich anfangen muss!

        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Mi 19.11.2008
Autor: arne83

Was ist denn die Definition von E[X|Y] und E[Y|X] ?

Wenn du zeigen sollst, dass wenn E[X|Y] = Y und E[Y|X]=X dass dann X=Y fast sicher gilt, musst du diese Ausdrücke über ein Integral betrachten.

Bezug
                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:28 Mi 19.11.2008
Autor: Zorba

Danke schonmal.
Ich glaube E[X|Y]= [mm] E[X|\sigma [/mm] (Y)]
Aber ich weiß nicht ob das stimmt und wie ich das nun als Integral schreibe.


Bezug
                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Fr 21.11.2008
Autor: steffenhst

Hallo,

nicht ganz, wenn dann E[X|Y]= [mm] E[X|\sigma (Y^{-1}(A'))]. [/mm] Warum? Eigentlich schreibt man [mm] E[X|\mathcal{G}], [/mm] wobei [mm] \mathcal{G} [/mm] eine [mm] Unter-\sigma-Algebra [/mm] von [mm] \mathcal{A} [/mm] ist. Wie bei der anderen Frage handelt es sich hier um den allgemeinen bedingten Erwartungswert unter der Bedingung [mm] \mathcal{G}. [/mm] Du kannst diesen auch für die ZV Y definieren, die im Urbildraum eine [mm] \sigma-Algebra \mathcal{G} [/mm] erzeugt, deshalb [mm] E[X|\sigma(Y^{-1}(A')). [/mm]

Nun zum Integral. Für den allgemeinen bedingten Erwartungswert gilt (und das ist wichtig, bei ihm handelt es sich nämlich nicht um eine bedingte Wahrscheinlichkeit oder eine Zahl), dass er eine numeriche Funktion ist, deren Integral auf der [mm] Unter-\sigma-Algebra \mathcal{G} [/mm] mit dem Integral von X übereinstimmt. Also:

[mm] \integral_{G}^{}{E(X|Y) d\mu} [/mm] = [mm] \integral_{G}^{}{X d\mu} [/mm] für alle G [mm] \in \mathcal{G}. [/mm]

Zu deiner Aufgabe: Ist die Aufgabenstellung vielleicht so, dass wenn E(X|Y) = X und E(X|Y) = Y , dann X = Y f.ü.? Würde nämlich mehr Sinn machen bei den gegebenen Infos. Der Beweis ist mit der Definition trivial, denn [mm] \integral_{G}^{}{X d\mu} [/mm] = [mm] \integral_{G}^{}{E(X|Y) d\mu} [/mm]
= [mm] \integral_{G}^{}{Y d\mu} [/mm]

Du musst nur noch eine Satz aus der Maßtheorie bringen, der  sagt, dass die Integrale zweier f.ü. identischer Funktionen ebenfalls f.ü. gleich sind.

Ich hoffe das hilft,
Steffen



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]