Erwartungswert < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:39 Sa 11.10.2008 | Autor: | ajna |
Aufgabe | Bei einem Brettspiel dürfen die Teilnehmer pro Spielrunde jeweils um eine zufällige Anzahl s von Schritten Richtung gemeinsames Ziel vorrücken. Falls eine Person in einer Spielrunde beim ersten Wurf mit einem einzelner Würfel eine Zahl n zwischen 1 und 5 realisiert, so ist s=n. Falls sie dabei eine 6 erwürfelt, so darf sie ein zweites Mal eine Zahl m erwürfeln und um s=m+n Schritte vorrücken. |
Nun muss ich den Erwartungswert von s berechnen. Dazu erhielt ich vom Professor folgende Formel:
E(s)= s1 x prob(s1)+s2 x prob (s2)+sn x prob(sn)
Also habe ich mal aufgeschrieben:
1 x 1/6 + 2 x 1/6 + 3 x 1/6 + 4 x 1/6 + 5 x 1/6
Nun weiss ich aber nicht mehr weiter, wie ich das mit der 6 machen soll. Muss ich ganz normal hinten addieren (also : 6 x 1/6) oder wie muss ich mit der 6 umgehen?
Liebe Grüsse
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:30 Sa 11.10.2008 | Autor: | Blech |
Wie weit rückst Du denn vor, wenn Du eine 6 gewürfelt hast?
Mit Wkeit 1/6 7 Felder (=6+1), mit 1/6 8 Felder (=6+2), etc. bis 12 (=6+6).
Die Wkeit eine 6 zu würfeln ist selbst 1/6, die Wkeit zuerst eine 6 und dann eine (z.B.) 2 zu würfeln ist also? =)
ciao
Stefan
|
|
|
|