www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Erwartungswert
Erwartungswert < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Fr 13.06.2008
Autor: doener

Sei X eine nicht-negative, stetige  zufallsvariable. man soll nun zeigen, dass
E[X] = [mm] \integral_{0}^{\infty}{Pr(X>x) dx}. [/mm]

Nun gibts dazu folgende erklärung:

[mm] \integral_{0}^{\infty}{Pr(X>x)} [/mm] = [mm] \integral_{0}^{\infty}{(1-F_{X}(x))} [/mm] =
[mm] \integral_{0}^{\infty}\integral_{x}^{\infty}{f_{X}(t) dt dx} [/mm]

das ist mir noch klar, man setzt einfach die verteilungsfunktion und deren definition ein.

nun gehts aber weiter:

[mm] \integral_{0}^{\infty}\integral_{x}^{\infty}{f_{X}(t) dt dx} [/mm] = [mm] \integral_{0}^{\infty}{\Bigg(\integral_{0}^{t}{dx}\Bigg)f_{X}(t) dt} [/mm] = [mm] \integral_{0}^{\infty}{t f_{X}(t) dt} [/mm]

wobei der letzte ausdruck natürlich die definition eines erwartungswertes ist. ich habe probleme mit der umformumg [mm] \integral_{0}^{\infty}\integral_{x}^{\infty}{f_{X}(t) dt dx} [/mm] = [mm] \integral_{0}^{\infty}{\Bigg(\integral_{0}^{t}{dx}\Bigg)f_{X}(t) dt} [/mm] .

was macht man hier?

        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Fr 13.06.2008
Autor: Somebody


> Sei X eine nicht-negative, stetige  zufallsvariable. man
> soll nun zeigen, dass
> E[X] = [mm]\integral_{0}^{\infty}{Pr(X>x) dx}.[/mm]
>  
> Nun gibts dazu folgende erklärung:
>  
> [mm]\integral_{0}^{\infty}{Pr(X>x)} = \integral_{0}^{\infty}{(1-F_{X}(x))} = \integral_{0}^{\infty}\integral_{x}^{\infty}{f_{X}(t) dt dx}[/mm]
>
> das ist mir noch klar, man setzt einfach die
> verteilungsfunktion und deren definition ein.
>  
> nun gehts aber weiter:
>  
> [mm]\integral_{0}^{\infty}\integral_{x}^{\infty}{f_{X}(t) dt dx} = \integral_{0}^{\infty}{\Bigg(\integral_{0}^{t}{dx}\Bigg)f_{X}(t) dt} =\integral_{0}^{\infty}{t f_{X}(t) dt}[/mm]
>  
> wobei der letzte ausdruck natürlich die definition eines
> erwartungswertes ist. ich habe probleme mit der umformumg
> [mm]\integral_{0}^{\infty}\integral_{x}^{\infty}{f_{X}(t) dt dx} = \integral_{0}^{\infty}{\Bigg(\integral_{0}^{t}{dx}\Bigg)f_{X}(t) dt}[/mm]
> .
>  
> was macht man hier?

Vielleicht hätte es geholfen, noch einen Zwischenschritt hinzuschreiben:

[mm]\integral_{0}^{\infty}\integral_{x}^{\infty}{f_{X}(t) dt dx} = \blue{\integral_0^\infty \integral_0^t f_X(t)\; dx\; dt} = \integral_{0}^{\infty}{\Bigg(\integral_{0}^{t}{dx}\Bigg)f_{X}(t) dt}[/mm]

Beim Übergang von links nach rechts zum mittleren Integral siehst Du, dass nur die Integrationsreihenfolge vertauscht wurde. Weil aber [mm] $f_X(t)$ [/mm] von $x$ nicht abhängt, konnte dann das Integral bezüglich $dx$ dann zu [mm] $\int_0^t\;dx$ [/mm] "zusammengezogen" werden.
Skizziere doch einmal rasch, in einem $x-t$ Koordinatensystem, den Integrationsbereich (=Teilfläche dieser Koordinatenebene, d.h. des [mm] $\IR^2$) [/mm] für das linke und dann noch für das mittlere Integral: es handelt sich um dieselbe Fläche.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]