www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert
Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Standardnormalverteilung
Status: (Frage) beantwortet Status 
Datum: 16:13 So 02.12.2007
Autor: devilofdeath

Aufgabe
Berechnen Sie für eine standardnormalverteilte sG X den Erwartungswert von Y = |X|.

Hallo!

Also der Erwartungswert ist ja normalerweise

E(x) = [mm] \integral_{-\infty}^{\infty}{x*f(x) dx} [/mm]

nur wie schaut die Dichtefunktion aus? und wie bring ich da noch die Bedingung y = |X| mit hinein?

Lg devil

        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 So 02.12.2007
Autor: luis52

Moin,



du hast zwei Moeglichkeiten: Die von dir aufgefuehrte Formel verwendest
du, wenn $f$ die Dichte von $|X|$ ist. Bezeichnet [mm] $\varphi$ [/mm] die Dichte
der Standardnormalverteilung, so kannst du den Erwartunswert auch nach

[mm] $\operatorname{E}[|X|]=\int_{-\infty}^{+\infty}|x|\varphi(x)\,dx$ [/mm]

berechnen.




lg Luis          

Bezug
                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 So 02.12.2007
Autor: devilofdeath

könntest du mir evtl noch schnell sagen, wie die Dichte aussieht?

lg

Bezug
                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 So 02.12.2007
Autor: luis52


> könntest du mir evtl noch schnell sagen, wie die Dichte
> aussieht?
>  

Ich vermute, du meinst $f$ (und nicht [mm] $\varphi$). [/mm]

Die bekommst du relativ einfach, wenn du erst die Verteilungsfunktion $F$
von $|X|$ bestimmst und diese ableitest. Zunaechst ist $F(x)=0$ fuer
[mm] $x\le [/mm] 0$. Sei $x>0$:


[mm] $F(x)=P(|X|\le x)=P(-x\le X\le x)=\Phi(x)-\Phi(-x)=2\Phi(x)-1$, [/mm]

woraus folgt [mm] $f(x)=2\varphi(x)$ [/mm] fuer $x>0$ und $f(x)=0$ fuer [mm] $x\le [/mm] 0$ folgt.  

lg Luis


Bezug
                                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 So 02.12.2007
Autor: devilofdeath


> Ich vermute, du meinst [mm]f[/mm] (und nicht [mm]\varphi[/mm]).
>  
> Die bekommst du relativ einfach, wenn du erst die
> Verteilungsfunktion [mm]F[/mm]
>  von [mm]|X|[/mm] bestimmst und diese ableitest. Zunaechst ist
> [mm]F(x)=0[/mm] fuer
>  [mm]x\le 0[/mm]. Sei [mm]x>0[/mm]:


Wieso ist egentlich F(x)=0  für x < 0  ?


> woraus folgt [mm]f(x)=2\varphi(x)[/mm] fuer [mm]x>0[/mm]


wie sieht die Funktion [mm] \varphi [/mm] aus?   bzw. muss ich nun einfach nur noch

[mm] \integral_{-\infty}^{\infty}{2x*\varphi(x) dx} [/mm] rechnen für den Erwartungswert?

Vielen Dank für die Hilfe!




Bezug
                                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 So 02.12.2007
Autor: luis52


> > Ich vermute, du meinst [mm]f[/mm] (und nicht [mm]\varphi[/mm]).
>  >  
> > Die bekommst du relativ einfach, wenn du erst die
> > Verteilungsfunktion [mm]F[/mm]
>  >  von [mm]|X|[/mm] bestimmst und diese ableitest. Zunaechst ist
> > [mm]F(x)=0[/mm] fuer
>  >  [mm]x\le 0[/mm]. Sei [mm]x>0[/mm]:
>  
>
> Wieso ist egentlich F(x)=0  für x < 0  ?

Weil [mm] $P(|X|\le [/mm] x)=0$ fuer [mm] $x\le [/mm] 0$.

>  
>
> > woraus folgt [mm]f(x)=2\varphi(x)[/mm] fuer [mm]x>0[/mm]
>
>
> wie sieht die Funktion [mm]\varphi[/mm] aus?   bzw. muss ich nun
> einfach nur noch

Siehe []http://de.wikibooks.org/wiki/Mathematik:_Statistik:_Normalverteilung

Sie wird dort mit [mm] $\varphi_z$ [/mm] bezeichnet


>
> [mm]\integral_{-\infty}^{\infty}{2x*\varphi(x) dx}[/mm] rechnen für
> den Erwartungswert?

Nicht ganz:

[mm]\integral_{0}^{\infty}{2x*\varphi(x) dx}[/mm]

lg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]