www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungstreuer Schätzer
Erwartungstreuer Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungstreuer Schätzer: exponentialverteilt
Status: (Frage) beantwortet Status 
Datum: 12:01 Mi 01.12.2004
Autor: twentyeight

Hallo zusammen,

habe eine Frage zur Erwartungstreue eines Schätzers:

Seien  [mm] n > 2 [/mm] und [mm] X_1,\ldots,X_n [/mm] i.i.d. [mm] \sim Exp(\lambda), \; \lambda > 0. [/mm] Weiter sei [mm] \hat{\lambda}_n = \bruch{n-1}{\sum_{i=1}^nX_i} [/mm] ein Schätzer für [mm] \lambda [/mm].

zz.: [mm] \hat{\lambda}_n [/mm] ist erwartungstreu für [mm] \lambda [/mm].

Ich hab mir gedacht, du machst es einfach wie immer:
[mm] E(\hat{\lambda}_n) = E(\bruch{n-1}{\sum_{i=1}^nX_i}) = (n-1)E(\bruch{1}{\sum_{i=1}^nX_i}) = (n-1)\bruch{n-1}{E(\sum_{i=1}^nX_i)} = \bruch{n-1}{n\bruch{1}{\lambda}} = \bruch{n-1}{n}\lambda [/mm],
(wegen der Linearität der Erwartungswertes und da die [mm] X_i [/mm] i.i.d.)
aber dann wäre [mm] \hat{\lambda}_n [/mm] nicht erwartungstreu.

Habe noch irgendwo aufgeschnappt, daß das über Faltung gehen soll. Aber da weiß ich nicht wirklich, wie man rangeht. Wär nett, wenn mir jemand helfen könnte.

Mfg


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Erwartungstreuer Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Mi 01.12.2004
Autor: Brigitte

Hallo!

[willkommenmr]

> Seien  [mm]n > 2[/mm] und [mm]X_1,\ldots,X_n[/mm] i.i.d. [mm]\sim Exp(\lambda), \; \lambda > 0.[/mm]
> Weiter sei [mm]\hat{\lambda}_n = \bruch{n-1}{\sum_{i=1}^nX_i}[/mm]
> ein Schätzer für [mm]\lambda [/mm].
>  
> zz.: [mm]\hat{\lambda}_n[/mm] ist erwartungstreu für [mm]\lambda [/mm].
>  
>
> Ich hab mir gedacht, du machst es einfach wie immer:
>  [mm]E(\hat{\lambda}_n) = E(\bruch{n-1}{\sum_{i=1}^nX_i}) = (n-1)E(\bruch{1}{\sum_{i=1}^nX_i}) = (n-1)\bruch{n-1}{E(\sum_{i=1}^nX_i)} = \bruch{n-1}{n\bruch{1}{\lambda}} = \bruch{n-1}{n}\lambda [/mm],

Hui. Aber es gilt im Allgemeinen doch nicht

[mm]E\left(\frac{1}{X}\right)=\frac{1}{E(X)}[/mm]

Da hilft auch die Linearität nicht weiter. Ich denke, Du musst schon zu Fuß rechnen, also:

[mm]E\left(\frac{1}{\sum_i X_i}\right)=\int_0^\infty\ldots\int_0^\infty \frac{1}{\sum_i x_i} \lambda^n e^{-\lambda\sum_i x_i} \,dx_n\ldots dx_1[/mm]

Schaffst Du das? Vielleicht sollte man da induktiv rangehen...

Viel Erfolg
Brigitte

P.S.: Kann leider nicht Korrektur lesen :-(

Bezug
        
Bezug
Erwartungstreuer Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 22:52 Mi 01.12.2004
Autor: Brigitte

Hallo nochmal!

> Seien  [mm]n > 2[/mm] und [mm]X_1,\ldots,X_n[/mm] i.i.d. [mm]\sim Exp(\lambda), \; \lambda > 0.[/mm]
> Weiter sei [mm]\hat{\lambda}_n = \bruch{n-1}{\sum_{i=1}^nX_i}[/mm]
> ein Schätzer für [mm]\lambda [/mm].
>  
> zz.: [mm]\hat{\lambda}_n[/mm] ist erwartungstreu für [mm]\lambda [/mm].

Habe noch mal über meinen INtegralansatz nachgedacht und bin zu keinem Ergebnis gekommen.

> Habe noch irgendwo aufgeschnappt, daß das über Faltung
> gehen soll. Aber da weiß ich nicht wirklich, wie man
> rangeht. Wär nett, wenn mir jemand helfen könnte.

Aber damit funktioniert es tatsächlich. Nehmen wir erst mal $n=2$. Die Dichte von [mm] $X_1+X_2$ [/mm] berechnet man nach der Faltungsformel

[mm]g_2(z)=\int_{-\infty}^{\infty} g(x,z-x)\,dx[/mm]

wobei $g$ die gemeinsame Dichte von [mm] $X_1$ [/mm] und [mm] $X_2$ [/mm] bezeichnet, also

[mm]g(x_1,x_2)=\left\{ \begin{array}{cl} \lambda^2e^{-\lambda (x_1+x_2)} & \mbox{für }x_1,x_2>0\\ 0& \mbox{sonst.} \end{array} \right.[/mm]

Beachte, dass bei der Berechnung von [mm] $g_2$ [/mm] auch die Integralgrenzen wichtig sind. Man erhält

[mm]g_2(z)=\lambda^2ze^{-\lambda z}[/mm]

für $z>0$ und 0 sonst. Nun kannst Du Schritt für Schritt [mm] $g_3$, $g_4$ [/mm] usw. bestimmen. Nach meiner REchnung ergibt sich

[mm]g_n(z)=\lambda^n\frac{z^{n-1}}{(n-1)!}e^{-\lambda z}[/mm]

für die Dichte von [mm] $Z:=X_1+\ldots X_n$. [/mm] Diese benutzt Du, um über erneute Integration den Erwartungswert von 1/Z zu bestimmen. Dann sollte es hinhauen.

Viele Grüße
Brigitte

Bezug
                
Bezug
Erwartungstreuer Schätzer: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 01:19 Do 02.12.2004
Autor: twentyeight

Hi!

Ich seh grad nicht weiter.

> Aber damit funktioniert es tatsächlich. Nehmen wir erst mal
> [mm]n=2[/mm]. Die Dichte von [mm]X_1+X_2[/mm] berechnet man nach der
> Faltungsformel
>  
> [mm]g_2(z)=\int_{-\infty}^{\infty} g(x,z-x)\,dx[/mm]

> wobei [mm]g[/mm] die gemeinsame Dichte von [mm]X_1[/mm] und [mm]X_2[/mm] bezeichnet, also

[mm]g(x_1,x_2)=\left\{ \begin{array}{cl} \lambda^2e^{-\lambda (x_1+x_2)} & \mbox{für }x_1,x_2>0\\ 0& \mbox{sonst.} \end{array} \right. [/mm]

> Beachte, dass bei der Berechnung von [mm]g_2[/mm] auch die Integralgrenzen wichtig sind. Man erhält

[mm]g_2(z)=\lambda^2ze^{-\lambda z}[/mm]

> für [mm]z>0[/mm] und 0 sonst.

Wenn ich das so in deine Formel mit den Bezeichnungen einsetze, komme ich zu
[mm] g_2(z)=\int_{-\infty}^{\infty} g(x,z-x)\,dx = \int_{-\infty}^{\infty} \lambda^2 e^{-\lambda(x+z-x)}dx = \int_{-\infty}^{\infty} \lambda^2 e^{-\lambda z}dx [/mm]
und das macht ja keinen Sinn. Was machst du denn mit dem [mm]dx[/mm]?

> Nun kannst Du Schritt für Schritt [mm]g_3[/mm], [mm]g_4[/mm] usw. bestimmen.

Wie sieht denn das [mm]g_3[/mm] aus?

[mm]g_3(z) = \int_{-\infty}^{\infty} g(x,z-x)\,dx[/mm]

Aber da müßten doch jetzt irgendwie 3 Argumente auftauchen, wenn ich es richtig sehe? *Verzweiflung*



Bezug
                        
Bezug
Erwartungstreuer Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 09:29 Do 02.12.2004
Autor: Brigitte

Hallo!

Sorry, dass ich beim ersten Mal zu ungenau erklärt habe.

> > Aber damit funktioniert es tatsächlich. Nehmen wir erst
> mal
> > [mm]n=2[/mm]. Die Dichte von [mm]X_1+X_2[/mm] berechnet man nach der
> > Faltungsformel
>  >  
> > [mm]g_2(z)=\int_{-\infty}^{\infty} g(x,z-x)\,dx[/mm]

  

> wobei [mm]g[/mm] die gemeinsame Dichte von [mm]X_1[/mm] und [mm]X_2[/mm] bezeichnet, also

  
>[mm]g(x_1,x_2)=\left\{ \begin{array}{cl} \lambda^2e^{-\lambda (x_1+x_2)} & \mbox{für }x_1,x_2>0\\ 0& \mbox{sonst.} \end{array} \right.[/mm]
> Beachte, dass bei der Berechnung von [mm]g_2[/mm] auch die Integralgrenzen wichtig sind. Man erhält

> > [mm]g_2(z)=\lambda^2ze^{-\lambda z}[/mm]
> > für [mm]z>0[/mm] und 0 sonst.
> Wenn ich das so in deine Formel mit den Bezeichnungen einsetze, komme ich zu
> [mm]g_2(z)=\int_{-\infty}^{\infty} g(x,z-x)\,dx = \int_{-\infty}^{\infty} \lambda^2 e^{-\lambda(x+z-x)}dx = \int_{-\infty}^{\infty} \lambda^2 e^{-\lambda z}dx[/mm]
> und das macht ja keinen Sinn. Was machst du denn mit dem [mm]dx[/mm]?

[notok] Du hast die Integralgrenzen nicht berücksichtigt. Die Dichte ist nur dann exht positiv, wenn $x>0$ und
$x-z>0$, also für $0<x<z$. Damit geht das Integral nur von 0 bis $z$, und Du erhältst noch den Faktor $z$ (den Du bei meiner Lösung offenbar übersehen hast).

> > Nun kannst Du Schritt für Schritt [mm]g_3[/mm], [mm]g_4[/mm] usw. bestimmen.
> Wie sieht denn das [mm]g_3[/mm] aus?
> [mm]g_3(z) = \int_{-\infty}^{\infty} g(x,z-x)\,dx[/mm]

Aber was ist nun $g$? Das muss ja die gemeinsame Dichte von [mm] $X_1+X_2$ [/mm] und [mm] $X_3$ [/mm] sein. Die Dichte von [mm] $X_1+X_2$ [/mm] ist [mm] $g_2(z)$ [/mm] und die Dichte von [mm] $X_3$ [/mm] wieder die von der Exponentialverteilung. Da die beiden Zufallsvariablen als unabhängig angenommen werden, darfst Du die beiden Dichten multiplizieren, um auf die gemeinsame zu kommen. Was kommt dann raus?

> Aber da müßten doch jetzt irgendwie 3 Argumente auftauchen, wenn ich es richtig sehe? *Verzweiflung*

Da Du immer nur zwei Zufallsvariablen betrachtest (hier [mm] $X_1+X_2$ [/mm] und [mm] $X_3$), [/mm] werden es nicht mehr Argumente, es bleibt bei zweien. Vielleicht gibt es ja auch eine Formel, die gleich alles auf einmal berücksichtigt. Aber ich finde es übersichtlicher, wenn man Schritt für Schritt vorgeht.

Viele Grüße
Brigitte

Bezug
                                
Bezug
Erwartungstreuer Schätzer: alles klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Do 02.12.2004
Autor: twentyeight

Hey brigitte!

Ja klar, danke schön. Wenn ich die Grenzen richtig (!) berücksichtige komme ich auch

[mm] g_2(z) = \int_{-\infty}^{\infty} g(x,z-x)\,dx = \int_0^z\lambda^2e^{-\lambda(x+z-x)}\,dx = \lambda^2e^{-\lambda z}z[/mm]

Mit

[mm] g_3(z) = \int_{-\infty}^{\infty} g(x,z-x)\,dx [/mm],

wobei [mm]g[/mm] die gemeinsame Dichte von [mm]X_1+X_2[/mm] und [mm]X_3[/mm] ist, also wegen der Unabhängigkeit

[mm]g_3(y,x_3) = g_2(y)f(x_3) = \lambda^2 z e^{-\lambda z} \lambda e^{-\lambda x_3} = \lambda^3 z e^{-\lambda(y+x_3)}[/mm] für [mm]y,x_3 > 0\quad (y=x_1+x_2)[/mm]

und 0 sonst.
usw. führt mich das tatsächlich auf die Form der gemeinsamen Dichte von [mm]Z=X_1+\ldots+X_n[/mm]

[mm]g_n(z) = \lambda^n\bruch{z^{n-1}}{(n-1)!}e^{-\lambda z}[/mm]

Wie's dann weitergeht ist ja klar, hast du ja geschrieben.
Ich danke dir vielmals... war nett und funktioniert ganz gut dieses Forum!

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]