Erste Ableitung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:21 Di 08.02.2005 | Autor: | Horst |
Hallo allerseits,
ich würde gerne wissen wie man [mm] \wurzel{r²- \bruch{a²}{4}} [/mm] ableitet. Ich muß die Seite a aus A=a * [mm] \wurzel{r²- \bruch{a²}{4}} [/mm] bestimmen (da wo sie maximal wird also erste Ableitung gleich Null).
Muss ich da nach der Produktregel vorgehen?
Ergeben soll sich übrigens: A'=1 [mm] *\wurzel{r²- \bruch{a²}{4}} [/mm] +a * [mm] \bruch{1}{2}(r- \bruch{a²}{4})^{- \bruch{1}{2}} [/mm] *(- [mm] \bruch{1}{2}a) [/mm] =0
Ich hoffe ich habe das jetzt richtig eingegeben.
Bin mit diesen Ableitungen nicht so ganz firm.
Wäre für Hilfe Dankbar
HORST
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:57 Di 08.02.2005 | Autor: | Fugre |
> Hallo allerseits,
>
> ich würde gerne wissen wie man [mm]\wurzel{r²- \bruch{a²}{4}}[/mm]
> ableitet. Ich muß die Seite a aus A=a * [mm]\wurzel{r²- \bruch{a²}{4}}[/mm]
> bestimmen (da wo sie maximal wird also erste Ableitung
> gleich Null).
> Muss ich da nach der Produktregel vorgehen?
>
> Ergeben soll sich übrigens: A'=1 [mm]*\wurzel{r²- \bruch{a²}{4}}[/mm]
> +a * [mm]\bruch{1}{2}(r- \bruch{a²}{4})^{- \bruch{1}{2}}[/mm] *(-
> [mm]\bruch{1}{2}a)[/mm] =0
>
>
> Ich hoffe ich habe das jetzt richtig eingegeben.
> Bin mit diesen Ableitungen nicht so ganz firm.
>
> Wäre für Hilfe Dankbar
>
> HORST
>
>
Hallo Horst,
du willst also [mm] $A(a)=$a*\wurzel{r²- \bruch{a²}{4}} [/mm] $ ableiten. Wie du richtig vermutest, brauchen wir dafür die
Produktregel, aber die allein reicht nicht aus, wir brauchen auch noch die Kettenregel.
Dann überlegen wir uns kurz was diese Regeln besagen,
fangen wir an mit der Kettenregel:
$f(x)=g(h(x)) [mm] \rightarrow [/mm] f'(x)=h'(x)*g'(h(x))$
und die Kettenregel:
$f(x)=u(x)*v(x) [mm] \rightarrow [/mm] f'(x)=u(x)*v'(x)+u'(x)*v(x)$
Jetzt könnten wir die Aufgabe etwas aufsplitten, sprich wir sagen $u(x)$ (hier besser $u(a)=a$) und $v(a)= [mm] \wurzel{r²- \bruch{a²}{4}} [/mm] $.
Nun sollten wir $u'(a)$ bilden und erhalten $u'(a)=1$.
Auch $v(a)= [mm] \wurzel{r²- \bruch{a²}{4}} [/mm] $ müssen wir nach der Kettenregel ableiten.
Das kannst du ja mal versuchen und uns deine Ergebnisse mitteilen, ansonsten melde dich noch mal, dann rechnen wir gemeinsam weiter.
Ich hoffe, dass ich dir helfen konnte. Sollte etwas unklar sein, so frag bitte nach.
Liebe Grüße
Fugre
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:25 Di 08.02.2005 | Autor: | Horst |
Hallo Fugre,
muss ich jetzt aus $ v(a)= [mm] \wurzel{r²- \bruch{a²}{4}} [/mm] $ -> (r² - [mm] \bruch{a²}{4})^{- \bruch{1}{2}}machen [/mm] und dann innen und außen ableiten?
Ich glaube so geht das. Bin mir aber über den Vollzug im eigentlichen nicht so ganz klar.
Wäre super, wenn du das etwas aufschlüsseln könntest.
HORST
|
|
|
|
|
> Hallo Fugre,
>
> muss ich jetzt aus [mm]v(a)= \wurzel{r²- \bruch{a²}{4}}[/mm] ->
> (r² - [mm]\bruch{a²}{4})^{- \bruch{1}{2}}machen[/mm] und dann innen
> und außen ableiten?
> Ich glaube so geht das. Bin mir aber über den Vollzug im
> eigentlichen nicht so ganz klar.
Stimmt aber schon (fast). Am besten fangen wir mit der innersten Ableitung (der von [mm]r^2- \bruch{a^2}{4}[/mm]) an. Die ist einfach
-a/2, denn r² ist konstant und fällt beim Ableiten weg, und der Rest ist ja einfach die Ableitung von Potenzfunktionen.
Für die äußere Ableitung ist es nun sehr günstig, die Wurzel als Exponent 1/2 auszudrücken, wie gesagt bekommen wir im Exponenten dann aber "hoch" +1/2 und nicht -1/2.
Dann können wir die Sache einfach wieder nach Potenzregel ableiten, denn es gilt ja: [mm](y^{\bruch{1}{2}})' = \bruch{1}{2}y^{\bruch{1}{2}}-1} =\bruch{1}{2}y^{-\bruch{1}{2}}}[/mm].
Mit [mm]y=r^2- \bruch{a^2}{4}[/mm] erhalten wir dann:
[mm]((r^2- \bruch{a^2}{4})^{\bruch{1}{2}})' = \bruch{1}{2}(r^2- \bruch{a^2}{4})^{-\bruch{1}{2}}[/mm].
So. Ab jetzt ist die Sache in etwa so wie Weihnachten, einfach auspacken, denn insgesamt haben wir dann:
[mm]v'(a)=\underbrace{-\bruch{a}{2}}_{\mbox{innere}}*\underbrace{\bruch{1}{2}(r^2- \bruch{a^2}{4})^{-\bruch{1}{2}}}_{\mbox{außere Ableitung}}[/mm]
Jetzt kann man den Exponenten -1/2 wieder als Wurzel ausdrücken und den Rest ein bißchen zusammenfassen, aber das ist letztlich nur Kosmetik:
[mm]v'(a)=-\bruch{a}{4\wurzel{r^2- \bruch{a^2}{4}}}[/mm].
Und damit sind wir dann auch schon am Ziel.
Ich hoffe, die einzelnen Schritte sind deutlich geworden.
Gruß,
Christian
|
|
|
|