www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Ergebnis
Ergebnis < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ergebnis: Wo ist der Fehler
Status: (Frage) beantwortet Status 
Datum: 20:36 Sa 07.02.2009
Autor: Christopf

ich habe eine Aufgabe

[mm] \limes_{n\rightarrow\infty} (1+\bruch{3}{n})^{2n} [/mm]

Mein Problem ist das ich jetzt nicht weis was das richtige Ergebnis ist.

Laut Taschenrechner ergibt das 1 und wenn ich den bekannte Grenzwertsatz [mm] \limes_{n\rightarrow\infty} (1+\bruch{1}{n})^{n} [/mm] = e deswegen habe ich gedacht das bei mir [mm] e^2 [/mm] rauskommt. Was mache ich falsch


        
Bezug
Ergebnis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Sa 07.02.2009
Autor: angela.h.b.


> ich habe eine Aufgabe
>  
> [mm]\limes_{n\rightarrow\infty} (1+\bruch{3}{n})^{2n}[/mm]
>  
> Mein Problem ist das ich jetzt nicht weis was das richtige
> Ergebnis ist.
>  
> Laut Taschenrechner ergibt das 1 und wenn ich den bekannte
> Grenzwertsatz [mm]\limes_{n\rightarrow\infty} (1+\bruch{1}{n})^{n}[/mm]
> = e deswegen habe ich gedacht das bei mir [mm]e^2[/mm] rauskommt.
> Was mache ich falsch

Hallo,

kennst Du denn auch den Grenzwert von [mm] (1+\bruch{x}{n})^{n} [/mm] ?

Bedenke weiter: [mm] (1+\bruch{3}{n})^{2n}=((1+\bruch{3}{n})^{n})^2. [/mm]

Gruß v. Angela

Bezug
                
Bezug
Ergebnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Sa 07.02.2009
Autor: Christopf

Den Grenzwert$ [mm] (1+\bruch{x}{n})^{n} [/mm] $ kenne ich nicht.
$ [mm] (1+\bruch{3}{n})^{2n}=((1+\bruch{3}{n})^{n})^2. [/mm] $
Bei diesen Tip kmme ich auch auf [mm] e^2 [/mm]

Wenn das ruichtig ist verstehe ich immer noch nicht das der Taschenrechner was anderes raus hat


Bezug
                        
Bezug
Ergebnis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Sa 07.02.2009
Autor: angela.h.b.


> Den Grenzwert[mm] (1+\bruch{x}{n})^{n}[/mm] kenne ich nicht.
> [mm](1+\bruch{3}{n})^{2n}=((1+\bruch{3}{n})^{n})^2.[/mm]
>  Bei diesen Tip kmme ich auch auf [mm]e^2[/mm]
>  
> Wenn das ruichtig ist verstehe ich immer noch nicht das der
> Taschenrechner was anderes raus hat

Hallo,

Du denkst hier nicht ganz logisch: Du hattest zuvor gesagt, daß [mm] \lim_{n\to \infty}(1+\bruch{1}{n})^{n}=e [/mm] ist, was völlig richtig ist.

[mm] e^2 [/mm] wäre demnach doch [mm] \lim_{n\to \infty}(1+\bruch{1}{n})^{2n}, [/mm] Du jedoch sollst  den grenzwert von [mm] (1+\bruch{3}{n})^{2n} [/mm] bestimmen.

Daß da nicht dasselbe herauskommt, wundert nur schwach, oder?

Es ist    [mm] lim_{n\to \infty}(1+\bruch{x}{n})^{n}=e^x, [/mm] und wenn Du das auch nicht weißt, so bin ich mir doch ziemlich sicher, daß Du es lt. Vorlesung wissen solltest.

Damit gelingt Dir dann auch die Ermittlung des Grenzwertes.

Gruß v. Angela

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]